#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection


Autoři: Jae Seung Lee aff001;  Keisuke Tabata aff002;  Woan-Ing Twu aff002;  Shafiqur Md Rahman aff003;  Hee Sun Kim aff001;  Jin Bae Yu aff003;  Min Hyeok Jee aff003;  Ralf Bartenschlager aff002;  Sung Key Jang aff001
Působiště autorů: Department of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA aff001;  Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany aff002;  Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA aff003;  Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany aff004
Vyšlo v časopise: RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008021
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008021

Souhrn

Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L.

Klíčová slova:

Biology and life sciences – Genetics – Gene expression – Gene regulation – Small interfering RNAs – Biochemistry – Nucleic acids – RNA – Non-coding RNA – Cell biology – Cell processes – Cell death – Autophagic cell death – Cellular structures and organelles – Vesicles – Molecular biology – Molecular biology techniques – Transfection – Microbiology – Virology – Viral replication – Medical microbiology – Microbial pathogens – Viral pathogens – Organisms – Viruses – RNA viruses – Flaviviruses – Hepacivirus – Hepatitis C virus – Research and analysis methods – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Physical sciences – Physics – Condensed matter physics – Nucleation


Zdroje

1. Polaris Observatory HCVC. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol. 2017;2(3):161–76. Epub 2017/04/14. doi: 10.1016/S2468-1253(16)30181-9 28404132.

2. Yamane D, McGivern DR, Masaki T, Lemon SM. Liver injury and disease pathogenesis in chronic hepatitis C. Curr Top Microbiol Immunol. 2013;369:263–88. Epub 2013/03/07. doi: 10.1007/978-3-642-27340-7_11 23463205.

3. Averhoff FM, Glass N, Holtzman D. Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin Infect Dis. 2012;55 Suppl 1:S10–5. Epub 2012/06/22. doi: 10.1093/cid/cis361 22715208.

4. Bartenschlager R, Lohmann V, Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol. 2013;11(7):482–96. Epub 2013/06/12. doi: 10.1038/nrmicro3046 23748342.

5. Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol. 2013;2(2):32–48. Epub 2013/11/01. doi: 10.5501/wjv.v2.i2.32 24175228; PubMed Central PMCID: PMC3785047.

6. Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol. 2018;16(3):125–42. Epub 2018/02/13. doi: 10.1038/nrmicro.2017.170 29430005.

7. Paul D, Madan V, Ramirez O, Bencun M, Stoeck IK, Jirasko V, et al. Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles. J Virol. 2018;92(4). Epub 2017/11/24. doi: 10.1128/JVI.01890-17 29167346; PubMed Central PMCID: PMC5790954.

8. Romero-Brey I, Berger C, Kallis S, Kolovou A, Paul D, Lohmann V, et al. NS5A Domain 1 and Polyprotein Cleavage Kinetics Are Critical for Induction of Double-Membrane Vesicles Associated with Hepatitis C Virus Replication. MBio. 2015;6(4):e00759. Epub 2015/07/15. doi: 10.1128/mBio.00759-15 26152585; PubMed Central PMCID: PMC4488949.

9. Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, Haselman U, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012;8(12):e1003056. Epub 2012/12/14. doi: 10.1371/journal.ppat.1003056 23236278; PubMed Central PMCID: PMC3516559.

10. Berger C, Romero-Brey I, Radujkovic D, Terreux R, Zayas M, Paul D, et al. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology. 2014;147(5):1094–105 e25. Epub 2014/07/22. doi: 10.1053/j.gastro.2014.07.019 25046163.

11. Huang Y, Staschke K, De Francesco R, Tan SL. Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology. 2007;364(1):1–9. Epub 2007/04/03. doi: 10.1016/j.virol.2007.01.042 17400273.

12. Paul D, Hoppe S, Saher G, Krijnse-Locker J, Bartenschlager R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol. 2013;87(19):10612–27. Epub 2013/07/26. doi: 10.1128/JVI.01370-13 23885072; PubMed Central PMCID: PMC3807400.

13. Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal. 2011;9:22. Epub 2011/10/08. doi: 10.1186/1478-811X-9-22 21978545; PubMed Central PMCID: PMC3195729.

14. Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep. 2004;5(12):1137–41. Epub 2004/12/04. doi: 10.1038/sj.embor.7400291 15577927; PubMed Central PMCID: PMC1299186.

15. Zhao Y, Wang Q, Qiu G, Zhou S, Jing Z, Wang J, et al. RACK1 Promotes Autophagy by Enhancing the Atg14L-Beclin 1-Vps34-Vps15 Complex Formation upon Phosphorylation by AMPK. Cell Rep. 2015;13(7):1407–17. Epub 2015/11/10. doi: 10.1016/j.celrep.2015.10.011 26549445.

16. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–64. Epub 2018/04/06. doi: 10.1038/s41580-018-0003-4 29618831.

17. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19(9):579–93. Epub 2018/07/15. doi: 10.1038/s41580-018-0033-y 30006559.

18. Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 2019;176(1–2):11–42. Epub 2019/01/12. doi: 10.1016/j.cell.2018.09.048 30633901.

19. Li Q, Zhang YY, Chiu S, Hu Z, Lan KH, Cha H, et al. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle. PLoS Pathog. 2014;10(5):e1004163. Epub 2014/05/24. doi: 10.1371/journal.ppat.1004163 24852294; PubMed Central PMCID: PMC4095987.

20. Shrivastava S, Raychoudhuri A, Steele R, Ray R, Ray RB. Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology. 2011;53(2):406–14. Epub 2011/01/29. doi: 10.1002/hep.24073 21274862; PubMed Central PMCID: PMC3335751.

21. Tanida I, Fukasawa M, Ueno T, Kominami E, Wakita T, Hanada K. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy. 2009;5(7):937–45. Epub 2009/07/25. doi: 10.4161/auto.5.7.9243 19625776.

22. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A. 2007;104(35):14050–5. Epub 2007/08/22. doi: 10.1073/pnas.0704014104 17709747; PubMed Central PMCID: PMC1955809.

23. Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–31. Epub 2009/12/26. doi: 10.1016/j.ceb.2009.11.014 20034776; PubMed Central PMCID: PMC2854249.

24. Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A. 2009;106(33):14046–51. Epub 2009/08/12. doi: 10.1073/pnas.0907344106 19666601; PubMed Central PMCID: PMC2729017.

25. Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology. 2008;48(4):1054–61. Epub 2008/08/09. doi: 10.1002/hep.22464 18688877; PubMed Central PMCID: PMC2562598.

26. Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MM. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol. 2011;85(20):10561–71. Epub 2011/08/13. doi: 10.1128/JVI.00173-11 21835792; PubMed Central PMCID: PMC3187495.

27. Quan M, Liu S, Li G, Wang Q, Zhang J, Zhang M, et al. A functional role for NS5ATP9 in the induction of HCV NS5A-mediated autophagy. J Viral Hepat. 2014;21(6):405–15. Epub 2014/04/23. doi: 10.1111/jvh.12155 24750205.

28. Shrivastava S, Bhanja Chowdhury J, Steele R, Ray R, Ray RB. Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J Virol. 2012;86(16):8705–12. Epub 2012/06/08. doi: 10.1128/JVI.00616-12 22674982; PubMed Central PMCID: PMC3421755.

29. Wang L, Tian Y, Ou JH. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 2015;11(3):e1004764. Epub 2015/03/26. doi: 10.1371/journal.ppat.1004764 25807108; PubMed Central PMCID: PMC4373777.

30. Jassey A, Liu CH, Changou CA, Richardson CD, Hsu HY, Lin LT. Hepatitis C Virus Non-Structural Protein 5A (NS5A) Disrupts Mitochondrial Dynamics and Induces Mitophagy. Cells. 2019;8(4). Epub 2019/04/03. doi: 10.3390/cells8040290 30934919.

31. Du H, Yin P, Yang X, Zhang L, Jin Q, Zhu G. Enterovirus 71 2C Protein Inhibits NF-kappaB Activation by Binding to RelA(p65). Sci Rep. 2015;5:14302. Epub 2015/09/24. doi: 10.1038/srep14302 26394554; PubMed Central PMCID: PMC4585786.

32. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340(6230):245–6. Epub 1989/07/20. doi: 10.1038/340245a0 2547163.

33. He Y, Yan W, Coito C, Li Y, Gale M Jr., Katze MG. The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol. 2003;84(Pt 3):535–43. Epub 2003/02/27. doi: 10.1099/vir.0.18658–0 12604803.

34. Kalliampakou KI, Kalamvoki M, Mavromara P. Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J Gen Virol. 2005;86(Pt 4):1015–25. Epub 2005/03/24. doi: 10.1099/vir.0.80728-0 15784895.

35. Karamichali E, Foka P, Tsitoura E, Kalliampakou K, Kazazi D, Karayiannis P, et al. HCV NS5A co-operates with PKR in modulating HCV IRES-dependent translation. Infect Genet Evol. 2014;26:113–22. Epub 2014/05/13. doi: 10.1016/j.meegid.2014.04.015 24815730.

36. Suzuki H, Tabata K, Morita E, Kawasaki M, Kato R, Dobson RC, et al. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure. 2014;22(1):47–58. Epub 2013/12/03. doi: 10.1016/j.str.2013.09.023 24290141.

37. Morris DH, Yip CK, Shi Y, Chait BT, Wang QJ. Beclin 1-Vps34 Complex Architecture: Understanding the Nuts and Bolts of Therapeutic Targets. Front Biol (Beijing). 2015;10(5):398–426. Epub 2015/12/23. doi: 10.1007/s11515-015-1374-y 26692106; PubMed Central PMCID: PMC4682202.

38. Paul D, Romero-Brey I, Gouttenoire J, Stoitsova S, Krijnse-Locker J, Moradpour D, et al. NS4B self-interaction through conserved C-terminal elements is required for the establishment of functional hepatitis C virus replication complexes. J Virol. 2011;85(14):6963–76. Epub 2011/05/06. doi: 10.1128/JVI.00502-11 21543474; PubMed Central PMCID: PMC3126587.

39. Fahmy AM, Labonte P. The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation. Sci Rep. 2017;7:40351. Epub 2017/01/10. doi: 10.1038/srep40351 28067309; PubMed Central PMCID: PMC5220323.

40. Mori H, Fukuhara T, Ono C, Tamura T, Sato A, Fauzyah Y, et al. Induction of selective autophagy in cells replicating hepatitis C virus genome. J Gen Virol. 2018;99(12):1643–57. Epub 2018/10/13. doi: 10.1099/jgv.0.001161 30311874.

41. Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57. Epub 2015/05/21. doi: 10.1038/nrn3961 25991442.

42. Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S, Fedorova A, et al. RACK1 controls IRES-mediated translation of viruses. Cell. 2014;159(5):1086–95. Epub 2014/11/25. doi: 10.1016/j.cell.2014.10.041 25416947; PubMed Central PMCID: PMC4243054.

43. Aoki H, Hayashi J, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol. 2000;74(4):1736–41. Epub 2000/01/22. doi: 10.1128/jvi.74.4.1736-1741.2000 10644344; PubMed Central PMCID: PMC111649.

44. McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, et al. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res. 2018;46(11):5776–91. Epub 2018/01/27. doi: 10.1093/nar/gky029 29373715; PubMed Central PMCID: PMC6009648.

45. Kim CS, Keum SJ, Jang SK. Generation of a cell culture-adapted hepatitis C virus with longer half life at physiological temperature. PLoS One. 2011;6(8):e22808. Epub 2011/08/11. doi: 10.1371/journal.pone.0022808 21829654; PubMed Central PMCID: PMC3150383.

46. Ryu I, Park JH, An S, Kwon OS, Jang SK. eIF4GI facilitates the MicroRNA-mediated gene silencing. PLoS One. 2013;8(2):e55725. Epub 2013/02/15. doi: 10.1371/journal.pone.0055725 23409027; PubMed Central PMCID: PMC3567085.

47. Bae IH, Kim HS, You Y, Chough C, Choe W, Seon MK, et al. Novel benzidine and diaminofluorene prolinamide derivatives as potent hepatitis C virus NS5A inhibitors. Eur J Med Chem. 2015;101:163–78. Epub 2015/07/03. doi: 10.1016/j.ejmech.2015.06.033 26134551.

48. Keum SJ, Park SM, Park JH, Jung JH, Shin EJ, Jang SK. The specific infectivity of hepatitis C virus changes through its life cycle. Virology. 2012;433(2):462–70. Epub 2012/09/25. doi: 10.1016/j.virol.2012.08.046 22999258.

49. Stoeck IK, Lee JY, Tabata K, Romero-Brey I, Paul D, Schult P, et al. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. J Virol. 2018;92(1). Epub 2017/10/20. doi: 10.1128/JVI.01196-17 29046459; PubMed Central PMCID: PMC5730777.

50. Schult P, Roth H, Adams RL, Mas C, Imbert L, Orlik C, et al. microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat Commun. 2018;9(1):2613. Epub 2018/07/06. doi: 10.1038/s41467-018-05053-3 29973597; PubMed Central PMCID: PMC6031695.

51. Jee MH, Hong KY, Park JH, Lee JS, Kim HS, Lee SH, et al. New Mechanism of Hepatic Fibrogenesis: Hepatitis C Virus Infection Induces Transforming Growth Factor beta1 Production through Glucose-Regulated Protein 94. J Virol. 2015;90(6):3044–55. Epub 2016/01/01. doi: 10.1128/JVI.02976-15 26719248; PubMed Central PMCID: PMC4810663.

52. Kim N, Kim MJ, Sung PS, Bae YC, Shin EC, Yoo JY. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun. 2016;7:10631. Epub 2016/02/13. doi: 10.1038/ncomms10631 26868272; PubMed Central PMCID: PMC4754343.

53. Wang F, Yamauchi M, Muramatsu M, Osawa T, Tsuchida R, Shibuya M. RACK1 regulates VEGF/Flt1-mediated cell migration via activation of a PI3K/Akt pathway. J Biol Chem. 2011;286(11):9097–106. Epub 2011/01/08. doi: 10.1074/jbc.M110.165605 21212275; PubMed Central PMCID: PMC3058986.

54. Borawski J, Troke P, Puyang X, Gibaja V, Zhao S, Mickanin C, et al. Class III phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators of hepatitis C virus replication. J Virol. 2009;83(19):10058–74. Epub 2009/07/17. doi: 10.1128/JVI.02418-08 19605471; PubMed Central PMCID: PMC2748049.

55. Wang L, Wang L, Gu Y, Shu Y, Shen Y, Xu Q. Integrin alpha6(high) cell population functions as an initiator in tumorigenesis and relapse of human liposarcoma. Mol Cancer Ther. 2011;10(12):2276–86. Epub 2011/10/08. doi: 10.1158/1535-7163.MCT-11-0487 21980129.

56. Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A, et al. Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett. 2008;582(19):2965–72. Epub 2008/08/02. doi: 10.1016/j.febslet.2008.07.034 18671973.

57. Matarrese P, Ascione B, Ciarlo L, Vona R, Leonetti C, Scarsella M, et al. Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study. Mol Cancer. 2010;9:207. Epub 2010/08/06. doi: 10.1186/1476-4598-9-207 20684763; PubMed Central PMCID: PMC2925371.

58. Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/-)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem. 2011;286(20):17543–59. Epub 2011/03/16. doi: 10.1074/jbc.M110.198515 21402692; PubMed Central PMCID: PMC3093829.

59. Choe J, Kim KM, Park S, Lee YK, Song OK, Kim MK, et al. Rapid degradation of replication-dependent histone mRNAs largely occurs on mRNAs bound by nuclear cap-binding proteins 80 and 20. Nucleic Acids Res. 2013;41(2):1307–18. Epub 2012/12/14. doi: 10.1093/nar/gks1196 23234701; PubMed Central PMCID: PMC3553978.

60. Son HG, Seo K, Seo M, Park S, Ham S, An SWA, et al. Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C. elegans. Genes Dev. 2018;32(23–24):1562–75. Epub 2018/11/28. doi: 10.1101/gad.317362.118 30478249; PubMed Central PMCID: PMC6295163.

61. Lee JY, Cortese M, Haselmann U, Tabata K, Romero-Brey I, Funaya C, et al. Spatiotemporal Coupling of the Hepatitis C Virus Replication Cycle by Creating a Lipid Droplet- Proximal Membranous Replication Compartment. Cell Rep. 2019;27(12):3602–17 e5. Epub 2019/06/20. doi: 10.1016/j.celrep.2019.05.063 31216478.

62. Friebe P, Boudet J, Simorre JP, Bartenschlager R. Kissing-loop interaction in the 3' end of the hepatitis C virus genome essential for RNA replication. J Virol. 2005;79(1):380–92. Epub 2004/12/15. doi: 10.1128/JVI.79.1.380-392.2005 15596831; PubMed Central PMCID: PMC538730.

63. Bae IH, Choi JK, Chough C, Keum SJ, Kim H, Jang SK, et al. Potent Hepatitis C Virus NS5A Inhibitors Containing a Benzidine Core. ACS Med Chem Lett. 2014;5(3):255–8. Epub 2014/06/06. doi: 10.1021/ml4003293 24900814; PubMed Central PMCID: PMC4027583.

64. Yu X, Sainz B Jr., Uprichard SL. Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening. Antimicrob Agents Chemother. 2009;53(10):4311–9. Epub 2009/07/22. doi: 10.1128/AAC.00495-09 19620334; PubMed Central PMCID: PMC2764155.

65. Kwon OS, An S, Kim E, Yu J, Hong KY, Lee JS, et al. An mRNA-specific tRNAi carrier eIF2A plays a pivotal role in cell proliferation under stress conditions: stress-resistant translation of c-Src mRNA is mediated by eIF2A. Nucleic Acids Res. 2017;45(1):296–310. Epub 2016/12/03. doi: 10.1093/nar/gkw1117 27899592; PubMed Central PMCID: PMC5224483.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#