#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Conidial surface proteins at the interface of fungal infections


Autoři: Matthew G. Blango aff001;  Olaf Kniemeyer aff001;  Axel A. Brakhage aff001
Působiště autorů: Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany aff001;  Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany aff002
Vyšlo v časopise: Conidial surface proteins at the interface of fungal infections. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1007939
Kategorie: Pearls
doi: https://doi.org/10.1371/journal.ppat.1007939


Zdroje

1. Osherov N, May GS. The molecular mechanisms of conidial germination. FEMS Microbiol Lett. 2001;199(2):153–60. Epub 2001/05/30. doi: 10.1111/j.1574-6968.2001.tb10667.x 11377860.

2. Ulrich N, Nagler K, Laue M, Cockell CS, Setlow P, Moeller R. Experimental studies addressing the longevity of Bacillus subtilis spores—The first data from a 500-year experiment. PLoS ONE. 2018;13(12):e0208425. Epub 2018/12/05. doi: 10.1371/journal.pone.0208425 30513104

3. Vesty EF, Saidi Y, Moody LA, Holloway D, Whitbread A, Needs S, et al. The decision to germinate is regulated by divergent molecular networks in spores and seeds. New Phytol. 2016;211(3):952–66. Epub 2016/06/04. doi: 10.1111/nph.14018 27257104

4. Bonner JT. The Social Amoebae: The Biology of Cellular Slime Molds. Princeton Univ Press, Princeton. 2009.

5. Watkinson SC, Boddy L, Money NP. The Fungi (Third Edition). Academic Press 2015:466.

6. Golan JJ, Pringle A. Long-Distance Dispersal of Fungi. Microbiol Spectr. 2017;5(4). Epub 2017/07/16. doi: 10.1128/microbiolspec.FUNK-0047-2016 28710849.

7. Sesartic A, Dallafior TN. Global fungal spore emissions, review and synthesis of literature data. Biogeosciences. 2011;(8):1181–92. doi: 10.5194/bg-8-1181-2011

8. Dales RE, Cakmak S, Judek S, Dann T, Coates F, Brook JR, et al. The role of fungal spores in thunderstorm asthma. Chest. 2003;123(3):745–50. Epub 2003/03/12. doi: 10.1378/chest.123.3.745 12628873.

9. Ghajari A, Lotfali E, Azari M, Fateh R, Kalantary S. Fungal Airborne Contamination as a Serious Threat for Respiratory Infection in the Hematology Ward. Tanaffos. 2015;14(4):257–61. Epub 2015/01/01. 27114728

10. Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, Schraufnagel DE. Climate Change and Respiratory Infections. Ann Am Thorac Soc. 2016;13(8):1223–30. Epub 2016/06/15. doi: 10.1513/AnnalsATS.201511-729PS 27300144.

11. Grunbacher A, Throm T, Seidel C, Gutt B, Rohrig J, Strunk T, et al. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS ONE. 2014;9(4):e94546. Epub 2014/04/12. doi: 10.1371/journal.pone.0094546 24722460

12. Pham CL, Rey A, Lo V, Soules M, Ren Q, Meisl G, et al. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep. 2016;6:25288. Epub 2016/05/05. doi: 10.1038/srep25288 27142249

13. Magarkar A, Mele N, Abdel-Rahman N, Butcher S, Torkkeli M, Serimaa R, et al. Hydrophobin film structure for HFBI and HFBII and mechanism for accelerated film formation. PLoS Comput Biol. 2014;10(7):e1003745. Epub 2014/08/01. doi: 10.1371/journal.pcbi.1003745 25079355

14. Santi L, Beys da Silva WO, Berger M, Guimaraes JA, Schrank A, Vainstein MH. Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon. 2010;55(4):874–80. Epub 2009/12/26. doi: 10.1016/j.toxicon.2009.12.012 20034509.

15. Gandier JA, Langelaan DN, Won A, O’onnell K, Grondin JL, Spencer HL, et al. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision. Sci Rep. 2017;7:45863. Epub 2017/04/11. doi: 10.1038/srep45863 28393921

16. Cho EM, Kirkland BH, Holder DJ, Keyhani NO. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology. 2007;153(Pt 10):3438–47. Epub 2007/10/02. doi: 10.1099/mic.0.2007/008532-0 17906142.

17. Qu J, Zou X, Yu J, Zhou Y. The conidial mucilage, natural film coatings, is involved in environmental adaptability and pathogenicity of Hirsutella satumaensis Aoki. Sci Rep. 2017;7(1):1301. Epub 2017/05/04. doi: 10.1038/s41598-017-01368-1 28465519

18. Valsecchi I, Dupres V, Michel JP, Duchateau M, Matondo M, Chamilos G, et al. The puzzling construction of the conidial outer layer of Aspergillus fumigatus. Cell Microbiol. 2018:e12994. Epub 2018/12/16. doi: 10.1111/cmi.12994 30552790.

19. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–21. Epub 2009/08/29. doi: 10.1038/nature08264 19713928.

20. Carrion Sde J, Leal SM Jr., Ghannoum MA, Aimanianda V, Latge JP, Pearlman E. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol. 2013;191(5):2581–8. Epub 2013/08/09. doi: 10.4049/jimmunol.1300748 23926321

21. Rambach G, Blum G, Latge JP, Fontaine T, Heinekamp T, Hagleitner M, et al. Identification of Aspergillus fumigatus Surface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets. J Infect Dis. 2015;212(7):1140–9. Epub 2015/03/27. doi: 10.1093/infdis/jiv191 25810442.

22. Bacher P, Kniemeyer O, Teutschbein J, Thon M, Vodisch M, Wartenberg D, et al. Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+ T cells. J Immunol. 2014;193(7):3332–43. Epub 2014/08/31. doi: 10.4049/jimmunol.1400776 25172488.

23. Kwon-Chung KJ, Sugui JA. Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013;9(12):e1003743. Epub 2013/12/19. doi: 10.1371/journal.ppat.1003743 24348239

24. Radosa S, Ferling I, Sprague JL, Westermann M, Hillmann F. The different morphologies of yeast and filamentous fungi trigger distinct killing and feeding mechanisms in a fungivorous amoeba. Environ Microbiol. 2019;21(5):1809–20. Epub 2019/03/15. doi: 10.1111/1462-2920.14588 30868709.

25. Hillmann F, Novohradska S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, et al. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol. 2015;17(8):2858–69. Epub 2015/02/17. doi: 10.1111/1462-2920.12808 25684622.

26. Novohradska S, Ferling I, Hillmann F. Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae. Front Cell Infect Microbiol. 2017;7:497. Epub 2017/12/21. doi: 10.3389/fcimb.2017.00497 29259922

27. Valero-Jimenez CA, van Kan JAL, Koenraadt CJM, Zwaan BJ, Schoustra SE. Experimental evolution to increase the efficacy of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes: Effects on mycelial growth and virulence. Evol Appl. 2017;10(5):433–43. Epub 2017/05/19. doi: 10.1111/eva.12451 28515777

28. Zhang S, Xia YX, Kim B, Keyhani NO. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol. 2011;80(3):811–26. Epub 2011/03/08. doi: 10.1111/j.1365-2958.2011.07613.x 21375591.

29. Dubey MK, Jensen DF, Karlsson M. Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol. 2014;14:18. Epub 2014/02/04. doi: 10.1186/1471-2180-14-18 24483277

30. Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal beta-glucan from the immune system. PLoS Pathog. 2013;9(8):e1003575. Epub 2013/08/31. doi: 10.1371/journal.ppat.1003575 23990787

31. Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 2011;7(11):e1002372. Epub 2011/11/22. doi: 10.1371/journal.ppat.1002372 22102815

32. Sheppard DC. Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr Opin Microbiol. 2011;14(4):375–9. Epub 2011/07/26. doi: 10.1016/j.mib.2011.07.006 21784698

33. Levdansky E, Kashi O, Sharon H, Shadkchan Y, Osherov N. The Aspergillus fumigatus cspA gene encoding a repeat-rich cell wall protein is important for normal conidial cell wall architecture and interaction with host cells. Eukaryot Cell. 2010;9(9):1403–15. Epub 2010/07/27. doi: 10.1128/EC.00126-10 20656913

34. Levdansky E, Romano J, Shadkchan Y, Sharon H, Verstrepen KJ, Fink GR, et al. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot Cell. 2007;6(8):1380–91. Epub 2007/06/15. doi: 10.1128/EC.00229-06 17557878

35. Kerr SC, Fischer GJ, Sinha M, McCabe O, Palmer JM, Choera T, et al. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog. 2016;12(4):e1005555. Epub 2016/04/09. doi: 10.1371/journal.ppat.1005555 27058347

36. Takahashi-Nakaguchi A, Sakai K, Takahashi H, Hagiwara D, Toyotome T, Chibana H, et al. Aspergillus fumigatus adhesion factors in dormant conidia revealed through comparative phenotypic and transcriptomic analyses. Cell Microbiol. 2018;20(3). Epub 2017/11/08. doi: 10.1111/cmi.12802 29113011

37. Gebremariam T, Liu M, Luo G, Bruno V, Phan QT, Waring AJ, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest. 2014;124(1):237–50. Epub 2013/12/21. doi: 10.1172/JCI71349 24355926

38. Jansson H-b, Friman E. Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycol Res. 1999;103(2):249–56. doi: 10.1017/s0953756298007084

39. Schumacher CF, Steiner U, Dehne HW, Oerke EC. Localized adhesion of nongerminated Venturia inaequalis conidia to leaves and artificial surfaces. Phytopathology. 2008;98(7):760–8. Epub 2008/10/24. doi: 10.1094/PHYTO-98-7-0760 18943251.

40. Hamer JE, Howard RJ, Chumley FG, Valent B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science. 1988;239(4837):288–90. Epub 1988/01/15. doi: 10.1126/science.239.4837.288 17769992.

41. Inoue K, Kitaoka H, Park P, Ikeda K. Novel aspects of hydrophobins in wheat isolate of Magnaporthe oryzae: Mpg1, but not Mhp1, is essential for adhesion and pathogenicity. J Gen Plant Pathol. 2016;82:18–28. doi: 10.1007/s10327-015-0632-9

42. Talbot NJ, Kershaw MJ, Wakley GE, De Vries O, Wessels J, Hamer JE. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell. 1996;8(6):985–99. Epub 1996/06/01. doi: 10.1105/tpc.8.6.985 12239409

43. Voltersen V, Blango MG, Herrmann S, Schmidt F, Heinekamp T, Strassburger M, et al. Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus Aspergillus fumigatus. MBio. 2018;9(5). Epub 2018/10/04. doi: 10.1128/mBio.01557-18 30279286

44. Shende R, Wong SSW, Rapole S, Beau R, Ibrahim-Granet O, Monod M, et al. Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. J Biol Chem. 2018;293(40):15538–55. Epub 2018/08/25. doi: 10.1074/jbc.RA117.001476 30139746

45. Liu H, Lee MJ, Solis NV, Phan QT, Swidergall M, Ralph B, et al. Aspergillus fumigatus CalA binds to integrin alpha5beta1 and mediates host cell invasion. Nat Microbiol. 2016;2:16211. Epub 2016/11/15. doi: 10.1038/nmicrobiol.2016.211 27841851

46. Denning DW, Pashley C, Hartl D, Wardlaw A, Godet C, Del Giacco S, et al. Fungal allergy in asthma-state of the art and research needs. Clin Transl Allergy. 2014;4:14. Epub 2014/04/17. doi: 10.1186/2045-7022-4-14 24735832

47. Nguyen KB, Sreelatha A, Durrant ES, Lopez-Garrido J, Muszewska A, Dudkiewicz M, et al. Phosphorylation of spore coat proteins by a family of atypical protein kinases. Proc Natl Acad Sci U S A. 2016;113(25):E3482–91. Epub 2016/05/18. doi: 10.1073/pnas.1605917113 27185916

48. Piscitelli A, Cicatiello P, Gravagnuolo AM, Sorrentino I, Pezzella C, Giardina P. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins. Biomolecules. 2017;7(3). Epub 2017/07/05. doi: 10.3390/biom7030045 28672843

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#