Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia
Autoři:
Denis Voronin aff001; Emily Schnall aff001; Alexandra Grote aff002; Shabnam Jawahar aff001; Waleed Ali aff001; Thomas R. Unnasch aff003; Elodie Ghedin aff002; Sara Lustigman aff001
Působiště autorů:
Molecular Parasitology, New York Blood Center, New York, New York, United States of America
aff001; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
aff002; Center for Global Health Infectious Disease Research, University of South Florida, College of Public Health, Tampa, Florida, United States of America
aff003; College of Global Public Health, New York University, New York, New York, United States of America
aff004
Vyšlo v časopise:
Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008085
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008085
Souhrn
Human parasitic nematodes are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness), diseases that are endemic to more than 80 countries and that consistently rank in the top ten for the highest number of years lived with disability. These filarial nematodes have evolved an obligate mutualistic association with an intracellular bacterium, Wolbachia, a symbiont that is essential for the successful development, reproduction, and survival of adult filarial worms. Elimination of the bacteria causes adult worms to die, making Wolbachia a primary target for developing new interventional tools to combat filariases. To further explore Wolbachia as a promising indirect macrofilaricidal drug target, the essential cellular processes that define the symbiotic Wolbachia-host interactions need to be identified. Genomic analyses revealed that while filarial nematodes encode all the enzymes necessary for glycolysis, Wolbachia does not encode the genes for three glycolytic enzymes: hexokinase, 6-phosphofructokinase, and pyruvate kinase. These enzymes are necessary for converting glucose into pyruvate. Wolbachia, however, has the full complement of genes required for gluconeogenesis starting with pyruvate, and for energy metabolism via the tricarboxylic acid cycle. Therefore, we hypothesized that Wolbachia might depend on host glycolysis to maintain a mutualistic association with their parasitic host. We did conditional experiments in vitro that confirmed that glycolysis and its end-product, pyruvate, sustain this symbiotic relationship. Analysis of alternative sources of pyruvate within the worm indicated that the filarial lactate dehydrogenase could also regulate the local intracellular concentration of pyruvate in proximity to Wolbachia and thus help control bacterial growth via molecular interactions with the bacteria. Lastly, we have shown that the parasite’s pyruvate kinase, the enzyme that performs the last step in glycolysis, could be a potential novel anti-filarial drug target. Establishing that glycolysis is an essential component of symbiosis in filarial worms could have a broader impact on research focused on other intracellular bacteria-host interactions where the role of glycolysis in supporting intracellular survival of bacteria has been reported.
Klíčová slova:
Brugia – Brugia malayi – Drug discovery – Glycolysis – Parasitic diseases – Pyruvate – Wolbachia – Intracellular pathogens
Zdroje
1. Vos T, Abajobir AA, Abbafati C, Abbas KM, Abate KH, Aboyans V. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for. Lancet. 2017;390: 1211–1259. doi: 10.1016/S0140-6736(17)32154-2 28919117
2. Hoerauf A, Pfarr K, Mand S, Debrah AY, Specht S. Filariasis in Africa-treatment challenges and prospects. Clinical Microbiology and Infection. 2011. pp. 977–985. doi: 10.1111/j.1469-0691.2011.03586.x 21722251
3. Twum-Danso NA. Loa loa encephalopathy temporally related to ivermectin administration reported from onchocerciasis mass treatment programs from 1989 to 2001: implications for the future. Filaria J. 2003;2. doi: 10.1186/1475-2883-2-S1-S7 14975064
4. Twum-Danso NA. Serious adverse events following treatment with ivermectin for onchocerciasis control: a review of reported cases. Filaria J. 2003;2. doi: 10.1186/1475-2883-2-S1-S3 14975060
5. Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet. 2007;369: 2021–2029. doi: 10.1016/S0140-6736(07)60942-8 17574093
6. WHO. GUIDELINE Alternative mass drug administration regimens to eliminate lymphatic filariasis [Internet]. J. King, editor. 2017. Available: https://www.who.int/lymphatic_filariasis/resources/9789241550161/en/
7. Comandatore F, Cordaux R, Bandi C, Blaxter M, Darby A, Makepeace BL, et al. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure. Open Biol. 2015;5: 150099. doi: 10.1098/rsob.150099 26631376
8. Taylor MJ, Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitology Today. 1999. pp. 437–442. doi: 10.1016/s0169-4758(99)01533-1 10511685
9. Bandi C, Trees AJ, Brattig NW. Wolbachia in filarial nematodes: Evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Veterinary Parasitology. 2001. pp. 215–238. doi: 10.1016/S0304-4017(01)00432-0
10. Hoerauf A, Mand S, Volkmann L, Büttner M, Marfo-Debrekyei Y, Taylor M, et al. Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect. 2003;5: 261–273. doi: 10.1016/S1286-4579(03)00026-1 12706439
11. Hoerauf A, Specht S, Marfo-Debrekyei Y, M B, Debrah AY, Mand S, et al. Efficacy of 5-week doxycycline treatment on adult Onchocerca volvulus. Parasitol Res. 2009;104: 437–447. doi: 10.1007/s00436-008-1217-8 18850111
12. Hoerauf A, Mand S, Adjei O, Fleischer B, Büttner DW. Depletion of wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet. 2001;357: 1415–1416. doi: 10.1016/S0140-6736(00)04581-5 11356444
13. Klarmann-Schulz U, Specht S, Debrah AY, Batsa L., Ayisi-Boateng NK, Osei-Mensah J, et al. Comparison of Doxycycline, Minocycline, Doxycycline plus Albendazole and Albendazole Alone in Their Efficacy against Onchocerciasis in a Randomized, Open-Label, Pilot Trial. PLoS Negl Trop Dis. 2017;11: e0005156. doi: 10.1371/journal.pntd.0005156 28056021
14. Taylor M, Hoerauf A, Townson S, Slatko B, Ward S. Anti-Wolbachia drug discovery and development: Safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology. 2014. pp. 119–127. doi: 10.1017/S0031182013001108 23866958
15. CDC/treatment. Available: https://www.cdc.gov/parasites/onchocerciasis/health_professionals/
16. Boussinesq M, Fobi G, Kuesel AC. Alternative treatment strategies to accelerate the elimination of onchocerciasis. International Health. 2018. doi: 10.1093/inthealth/ihx054 29471342
17. Taylor MJ, Von Geldern TW, Ford L, Hübner MP, Marsh K, Johnston KL, et al. Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and onchocerciasis. Sci Transl Med. 2019;11: eaau2086. doi: 10.1126/scitranslmed.aau2086 30867321
18. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, et al. The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 2005;3: 0599–0614. doi: 10.1371/journal.pbio.0030121 15780005
19. Ghedin E, Ghedin E, Daehnel K, Daehnel K, Foster J, Foster J, et al. The symbiotic relationship between filarial parasitic nematodes and their Wolbachia endosymbionts—A resource for a new generation of control measures. Symbiosis. 2008;46: 77–85.
20. Melnikow E, Xu S, Liu J, Bell AJ, Ghedin E, Unnasch TR, et al. A Potential Role for the Interaction of Wolbachia Surface Proteins with the Brugia malayi Glycolytic Enzymes and Cytoskeleton in Maintenance of Endosymbiosis. PLoS Negl Trop Dis. 2013;7. doi: 10.1371/journal.pntd.0002151 23593519
21. Voronin D, Bachu S, Shlossman M, Unnasch TR, Ghedin E, Lustigman S. Glucose and glycogen metabolism in brugia malayi is associated with wolbachia symbiont fitness. PLoS One. 2016;11: e0153812. doi: 10.1371/journal.pone.0153812 27078260
22. Lau YL, Lee WC, Xia J, Zhang G, Razali R, Anwar A, et al. Draft genome of Brugia pahangi: High similarity between B. pahangi and B. malayi. Parasites and Vectors. 2015;8. doi: 10.1186/s13071-014-0621-4
23. Lee JY, Ishida Y, Takahashi T, Naganuma A, Hwang GW. Transport of pyruvate into mitochondria is involved in methylmercury toxicity. Sci Rep. 2016;6: 21528. doi: 10.1038/srep21528 26899208
24. McGarry HF, Egerton GL, Taylor MJ. Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol Biochem Parasitol. 2004;135: 57–67. doi: 10.1016/j.molbiopara.2004.01.006 15287587
25. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol. 2012;78: 4740–4743. doi: 10.1128/AEM.00069-12 22522691
26. Li BW, Rush AC, Tan J, Weil GJ. Quantitative analysis of gender-regulated transcripts in the filarial nematode Brugia malayi by real-time RT-PCR. Mol Biochem Parasitol. 2004;390: 1211–1259. doi: 10.1016/j.molbiopara.2004.07.002
27. Grote A, Voronin D, Ding T, Twaddle A, Unnasch TR, Lustigman S, et al. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Negl Trop Dis. 2017;11. doi: 10.1371/journal.pntd.0005357 28358880
28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26: 139–140. doi: 10.1093/bioinformatics/btp616 19910308
29. Li XB, Gu JD, Zhou QH. Review of aerobic glycolysis and its key enzymes—new targets for lung cancer therapy. Thoracic Cancer. 2015. pp. 17–24. doi: 10.1111/1759-7714.12148 26273330
30. Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale Journal of Biology and Medicine. 2007. pp. 51–60. 18160990
31. Hu C-J, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC. Differential Regulation of the Transcriptional Activities of Hypoxia-Inducible Factor 1 Alpha (HIF-1) and HIF-2 in Stem Cells. Mol Cell Biol. 2006;26: 3514–3526. doi: 10.1128/MCB.26.9.3514-3526.2006 16611993
32. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, et al. Draft genome of the filarial nematode parasite Brugia malayi. Science (80-). 2007;317: 1756–1760. doi: 10.1126/science.1145406 17885136
33. Campanella ME, Chu H, Wandersee NJ, Peters LL, Mohandas N, Gilligan DM, et al. Characterization of glycolytic enzyme interactions with murine erythrocyte membranes in wild-type and membrane protein knockout mice. Blood. 2008;112: 3900–3906. doi: 10.1182/blood-2008-03-146159 18698006
34. Campanella ME, Chu H, Low PS. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci. 2005;102: 2402–2407. doi: 10.1073/pnas.0409741102 15701694
35. Anderson CL, Karr TL. Wolbachia: Evolutionary novelty in a rickettsial bacteria. BMC Evol Biol. 2001;1. doi: 10.1186/1471-2148-1-1
36. Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Front Cell Infect Microbiol. 2017;7. doi: 10.3389/fcimb.2017.00023 28229048
37. Dunning-Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli S V, Eisen J a, et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006;2: 208–223. doi: 10.1371/journal.pgen.0020021 16482227
38. Rikihisa Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev. 2011;24: 469–489. doi: 10.1128/CMR.00064-10 21734244
39. Shin JH, Yang JY, Jeon BY, Yoon YJ, Cho SN, Kang YH, et al. 1H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res. 2011;10: 2238–2247. doi: 10.1021/pr101054m 21452902
40. Lecuit M, Sonnenburg JL, Cossart P, Gordon JI. Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. J Biol Chem. 2007;282: 15065–15072. doi: 10.1074/jbc.M610926200 17389602
41. Rao RU, Huang Y, Abubucker S, Heinz M, Crosby SD, Mitreva M, et al. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo. J Biomed Sci. 2012;19. doi: 10.1186/1423-0127-19-19
42. Hsu MC, Hung WC. Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling. Molecular Cancer. 2018. doi: 10.1186/s12943-018-0791-3 29455645
43. Verlinde CLMJ, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, et al. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat. 2001;4: 50–65. doi: 10.1054/drup.2000.0177 11512153
44. Babu MS, Mahanta S, Lakhter AJ, Hato T, Paul S, Naidu SR. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One. 2018;13. doi: 10.1371/journal.pone.0191419 29394289
45. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death and Disease. 2013. doi: 10.1038/cddis.2013.60 23470539
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge
- Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize