Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917
Autoři:
Clémence Massip aff001; Priscilla Branchu aff001; Nadège Bossuet-Grief aff001; Camille V. Chagneau aff001; Déborah Gaillard aff001; Patricia Martin aff001; Michèle Boury aff001; Thomas Sécher aff001; Damien Dubois aff001; Jean-Philippe Nougayrède aff001; Eric Oswald aff001
Působiště autorů:
IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
aff001; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
aff002
Vyšlo v časopise:
Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008029
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008029
Souhrn
Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.
Klíčová slova:
Antibacterials – Bacterial pathogens – Gastrointestinal tract – Islands – Proteases – Probiotics – Salmonella typhimurium – Salmonellosis
Zdroje
1. Wassenaar TM. Insights from 100 years of research with probiotic E. coli. Eur J Microbiol Immunol. 2016;6: 147–161.
2. Sonnenborn U. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett. 2016;363.
3. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, et al. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013;14: 26. doi: 10.1016/j.chom.2013.06.007 23870311
4. Sassone-Corsi M, Nuccio S-P, Liu H, Hernandez D, Vu CT, Takahashi AA, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature. 2016;540: 280–283. doi: 10.1038/nature20557 27798599
5. Rund SA, Rohde H, Sonnenborn U, Oelschlaeger TA. Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7. Int J Med Microbiol IJMM. 2013;303: 1–8. doi: 10.1016/j.ijmm.2012.11.006 23312798
6. Henker J, Laass M, Blokhin BM, Bolbot YK, Maydannik VG, Elze M, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur J Pediatr. 2007;166: 311–318. doi: 10.1007/s00431-007-0419-x 17287932
7. Möllenbrink M, Bruckschen E. [Treatment of chronic constipation with physiologic Escherichia coli bacteria. Results of a clinical study of the effectiveness and tolerance of microbiological therapy with the Escherichia coli Nissle 1917 strain (Mutaflor)]. Med Klin Munich Ger 1983. 1994;89: 587–593.
8. Kruis W, Chrubasik S, Boehm S, Stange C, Schulze J. A double-blind placebo-controlled trial to study therapeutic effects of probiotic Escherichia coli Nissle 1917 in subgroups of patients with irritable bowel syndrome. Int J Colorectal Dis. 2012;27: 467–474. doi: 10.1007/s00384-011-1363-9 22130826
9. Losurdo G, Iannone A, Contaldo A, Ierardi E, Di Leo A, Principi M. Escherichia coli Nissle 1917 in ulcerative colitis treatment: systematic review and meta-analysis. J Gastrointest Liver Dis JGLD. 2015;24: 499–505.
10. Sonnenborn U, Schulze J. The non-pathogenic Escherichia coli strain Nissle 1917 –features of a versatile probiotic. Microb Ecol Health Dis. 2009;21: 122–158.
11. Papavassiliou J. Biological characteristics of colicine X. Nature. 1961;190: 110. doi: 10.1038/190110a0 13732629
12. Patzer SI. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology. 2003;149: 2557–2570. doi: 10.1099/mic.0.26396-0 12949180
13. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob Agents Chemother. 2010;54: 288–297. doi: 10.1128/AAC.00744-09 19884380
14. Asensio C, Pérez-Díaz JC, Martínez MC, Baquero F. A new family of low molecular weight antibiotics from enterobacteria. Biochem Biophys Res Commun. 1976;69: 7–14. doi: 10.1016/s0006-291x(76)80264-1 4071
15. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 2007;24: 708–734. doi: 10.1039/b516237h 17653356
16. Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem. 2004;279: 28233–28242. doi: 10.1074/jbc.M400228200 15102848
17. Nolan EM, Fischbach MA, Koglin A, Walsh CT. Biosynthetic tailoring of microcin E492m: post-translational modification affords an antibacterial siderophore-peptide conjugate. J Am Chem Soc. 2007;129: 14336–14347. doi: 10.1021/ja074650f 17973380
18. Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol. 2004;186: 5432–5441. doi: 10.1128/JB.186.16.5432-5441.2004 15292145
19. Vejborg RM, Friis C, Hancock V, Schembri MA, Klemm P. A virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol Genet Genomics. 2010;283: 469–484. doi: 10.1007/s00438-010-0532-9 20354866
20. Reister M, Hoffmeier K, Krezdorn N, Rotter B, Liang C, Rund S, et al. Complete genome sequence of the gram-negative probiotic Escherichia coli strain Nissle 1917. J Biotechnol. 2014;187: 106–107. doi: 10.1016/j.jbiotec.2014.07.442 25093936
21. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313: 848–851. doi: 10.1126/science.1127059 16902142
22. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010;107: 11537–11542. doi: 10.1073/pnas.1001261107 20534522
23. Mousa JJ, Yang Y, Tomkovich S, Shima A, Newsome RC, Tripathi P, et al. MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol. 2016;1: nmicrobiol20159.
24. Dubois D, Baron O, Cougnoux A, Delmas J, Pradel N, Boury M, et al. ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides. J Biol Chem. 2011;286: 35562–35570. doi: 10.1074/jbc.M111.221960 21795676
25. Brotherton CA, Balskus EP. A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J Am Chem Soc. 2013;135: 3359–3362. doi: 10.1021/ja312154m 23406518
26. Marcq I, Martin P, Payros D, Cuevas-Ramos G, Boury M, Watrin C, et al. The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli. J Infect Dis. 2014;210: 285–294. doi: 10.1093/infdis/jiu071 24489107
27. McCarthy AJ, Martin P, Cloup E, Stabler RA, Oswald E, Taylor PW. The genotoxin colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection. Infect Immun. 2015;83: 3704–3711. doi: 10.1128/IAI.00716-15 26150540
28. Payros D, Secher T, Boury M, Brehin C, Ménard S, Salvador-Cartier C, et al. Maternally acquired genotoxic Escherichia coli alters offspring’s intestinal homeostasis. Gut Microbes. 2014;5: 313–325. doi: 10.4161/gmic.28932 24971581
29. Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D, Petit C, et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mBio. 2018;9.
30. Xue M, Shine E, Wang W, Crawford JM, Herzon SB. Characterization of natural colibactin–nucleobase adducts by tandem mass spectrometry and isotopic labeling. Support for DNA alkylation by cyclopropane ring opening. Biochemistry. 2018;57: 6391–6394. doi: 10.1021/acs.biochem.8b01023 30365310
31. Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA. Nat Chem. 2015;7: 411–417. doi: 10.1038/nchem.2221 25901819
32. Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363: eaar7785.
33. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338: 120–123. doi: 10.1126/science.1224820 22903521
34. Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE. 2013;8.
35. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63: 1932–1942. doi: 10.1136/gutjnl-2013-305257 24658599
36. Pérez-Berezo T, Pujo J, Martin P, Faouder P, Galano J-M, Guy A, et al. Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nat Commun. 2017;8: 1314. doi: 10.1038/s41467-017-01403-9 29101366
37. Olier M, Marcq I, Salvador-Cartier C, Secher T, Dobrindt U, Boury M, et al. Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microbes. 2012;3: 501–509. doi: 10.4161/gmic.21737 22895085
38. Martin P, Marcq I, Magistro G, Penary M, Garcie C, Payros D, et al. Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli. PLoS Pathog. 2013;9.
39. Boudeau J, Glasser A-L, Julien S, Colombel J-F, Darfeuille-Michaud A. Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent–invasive Escherichia coli strains isolated from patients with Crohn’s disease. Aliment Pharmacol Ther. 2003;18: 45–56.
40. Huebner C, Ding Y, Petermann I, Knapp C, Ferguson LR. The probiotic Escherichia coli Nissle 1917 reduces pathogen invasion and modulates cytokine expression in Caco-2 cells infected with Crohn’s disease-associated E. coli LF82. Appl Environ Microbiol. 2011;77: 2541–2544. doi: 10.1128/AEM.01601-10 21317252
41. Rusnak F, Faraci WS, Walsh CT. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry. 1989;28: 6827–6835. doi: 10.1021/bi00443a008 2531000
42. Poey ME, Azpiroz MF, Laviña M. Comparative analysis of chromosome-encoded microcins. Antimicrob Agents Chemother. 2006;50: 1411–1418. doi: 10.1128/AAC.50.4.1411-1418.2006 16569859
43. Lin H, Fischbach MA, Liu DR, Walsh CT. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc. 2005;127: 11075. doi: 10.1021/ja0522027 16076215
44. Zhu M, Valdebenito M, Winkelmann G, Hantke K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology. 2005;151: 2363–2372. doi: 10.1099/mic.0.27888-0 16000726
45. Nolan EM, Walsh CT. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form “Trojan Horse” antibiotics. Biochemistry. 2008;47: 9289–9299. doi: 10.1021/bi800826j 18690711
46. Cougnoux A, Gibold L, Robin F, Dubois D, Pradel N, Darfeuille-Michaud A, et al. Analysis of structure–function relationships in the colibactin-maturating enzyme ClbP. J Mol Biol. 2012;424: 203–214. doi: 10.1016/j.jmb.2012.09.017 23041299
47. Gaggero C, Moreno F, Laviña M. Genetic analysis of microcin H47 antibiotic system. J Bacteriol. 1993;175: 5420–5427. doi: 10.1128/jb.175.17.5420-5427.1993 8366029
48. Azpiroz MF, Rodríguez E, Laviña M. The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob Agents Chemother. 2001;45: 969–972. doi: 10.1128/AAC.45.3.969-972.2001 11181394
49. Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M, Hogardt M, et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 2003;71: 2839–2858. doi: 10.1128/IAI.71.5.2839-2858.2003 12704158
50. Ventola CL. The antibiotic resistance crisis. Pharm Ther. 2015;40: 277–283.
51. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18: 318–327. doi: 10.1016/S1473-3099(17)30753-3 29276051
52. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2018;0.
53. Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11: 95–105. doi: 10.1038/nrmicro2937 23268227
54. Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med. 2018;24: 1097–1103. doi: 10.1038/s41591-018-0145-0 30082869
55. Gardiner GE, Rea MC, O’Riordan B, O’Connor P, Morgan SM, Lawlor PG, et al. Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Appl Environ Microbiol. 2007;73: 7103–7109. doi: 10.1128/AEM.01117-07 17766459
56. Naimi S, Zirah S, Hammami R, Fernandez B, Rebuffat S, Fliss I. Fate and biological activity of the antimicrobial lasso peptide microcin J25 under gastrointestinal tract conditions. Front Microbiol. 2018;9.
57. Forkus B, Ritter S, Vlysidis M, Geldart K, Kaznessis YN. Antimicrobial Probiotics Reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci Rep. 2017;7: 40695. doi: 10.1038/srep40695 28094807
58. Geldart KG, Kommineni S, Forbes M, Hayward M, Dunny GM, Salzman NH, et al. Engineered E. coli Nissle 1917 for the reduction of vancomycin‐resistant Enterococcus in the intestinal tract. Bioeng Transl Med. 2018;3: 197–208. doi: 10.1002/btm2.10107 30377660
59. Guenther K, Straube E, Pfister W, Guenther A, Huebler A. Sever sepsis after probiotic treatment with Escherichia coli Nissle 1917. Pediatr Infect Dis J. 2010;29: 188–189.
60. Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20: 859–867.
61. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359: 592–597. doi: 10.1126/science.aah3648 29420293
62. Romano M, Fusco G, Choudhury HG, Mehmood S, Robinson CV, Zirah S, et al. Structural basis for natural product selection and export by bacterial ABC transporters. ACS Chem Biol. 2018;13: 1598–1609. doi: 10.1021/acschembio.8b00226 29757605
63. Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: “The other bad E. coli.” J Lab Clin Med. 2002;139: 155–162. doi: 10.1067/mlc.2002.121550 11944026
64. Hendrickson H. Order and disorder during Escherichia coli divergence. PLoS Genet. 2009;5: e1000335. doi: 10.1371/journal.pgen.1000335 19165327
65. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97: 6640–6645. doi: 10.1073/pnas.120163297 10829079
66. Gallagher RR, Li Z, Lewis AO, Isaacs FJ. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat Protoc. 2014;9: 2301–2316. doi: 10.1038/nprot.2014.082 25188632
67. Bossuet-Greif N, Belloy M, Boury M, Oswald E, Nougayrede J-P. Protocol for HeLa cells infection with Escherichia coli strains producing colibactin and quantification of the induced DNA-damage. BIO-Protoc. 2017;7.
68. Boudeau J, Glasser A-L, Masseret E, Joly B, Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease. Infect Immun. 1999;67: 4499–4509. 10456892
69. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5: 58–65. doi: 10.1111/1758-2229.12019 23757131
70. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45: D535–D542. doi: 10.1093/nar/gkw1017 27899627
71. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33: 1870–1874. doi: 10.1093/molbev/msw054 27004904
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11