Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion
Autoři:
Kai Li aff001; Yongzhen Liu aff001; Zengkun Xu aff001; Yu Zhang aff001; Dan Luo aff001; Yulong Gao aff001; Yingjuan Qian aff002; Chenyi Bao aff002; Changjun Liu aff001; Yanping Zhang aff001; Xiaole Qi aff001; Hongyu Cui aff001; Yongqiang Wang aff001; Li Gao aff001; Xiaomei Wang aff001
Působiště autorů:
Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
aff001; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
aff002
Vyšlo v časopise:
Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1007999
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1007999
Souhrn
The cellular DNA sensor cGMP-AMP synthase (cGAS) detects cytosolic viral DNA via the stimulator of interferon genes (STING) to initiate innate antiviral response. Herpesviruses are known to target key immune signaling pathways to persist in an immune-competent host. Marek’s disease virus (MDV), a highly pathogenic and oncogenic herpesvirus of chickens, can antagonize host innate immune responses to achieve persistent infection. With a functional screen, we identified five MDV proteins that blocked beta interferon (IFN-β) induction downstream of the cGAS-STING pathway. Specifically, the MDV major oncoprotein Meq impeded the recruitment of TANK-binding kinase 1 and IFN regulatory factor 7 (IRF7) to the STING complex, thereby inhibiting IRF7 activation and IFN-β induction. Meq overexpression markedly reduced antiviral responses stimulated by cytosolic DNA, whereas knockdown of Meq heightened MDV-triggered induction of IFN-β and downstream antiviral genes. Moreover, Meq-deficient MDV induced more IFN-β production than wild-type MDV. Meq-deficient MDV also triggered a more robust CD8+ T cell response than wild-type MDV. As such, the Meq-deficient MDV was highly attenuated in replication and lymphoma induction compared to wild-type MDV. Taken together, these results revealed that MDV evades the cGAS-STING DNA sensing pathway, which underpins the efficient replication and oncogenesis. These findings improve our understanding of the virus-host interaction in MDV-induced lymphoma and may contribute to the development of novel vaccines against MDV infection.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Birds – Fowl – Gamefowl – Chickens – Poultry – Molecular biology – Molecular biology techniques – DNA construction – Plasmid construction – Microbiology – Virology – Viral replication – Computational biology – Genetics – Genomics – Genome analysis – Gene prediction – Biochemistry – Enzymology – Enzymes – Oxidoreductases – Luciferase – Proteins – Bioengineering – Biotechnology – Genetic engineering – Plasmid vectors – Research and analysis methods – Medicine and health sciences – Oncology – Carcinogenesis – Immunology – Immune response – Engineering and technology
Zdroje
1. Nair V. Spotlight on avian pathology: Marek’s disease. Avian Pathol. 2018; 47(5):440–442. https://doi.org/10.1080/03079457.2018.1484073 29882420.
2. Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. Marek’s disease virus: from miasma to model. Nat Rev Microbiol. 2006; 4(4):283–294. https://doi.org/10.1038/nrmicro1382 16541136.
3. Epstein MA. Historical background. Philos Trans R Soc Lond B Biol Sci. 2001; 356(1408):413–420. https://doi.org/10.1098/rstb.2000.0774 11313002.
4. Biggs PM, Nair V. The long view: 40 years of Marek’s disease research and Avian Pathology. Avian Pathol. 2012; 41(1):3–9. https://doi.org/10.1080/03079457.2011.646238 22845316.
5. Beachboard DC, Horner SM. Innate immune evasion strategies of DNA and RNA viruses. Curr Opin Microbiol. 2016; 32:113–119. https://doi.org/10.1016/j.mib.2016.05.015 27288760.
6. Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014; 32:461–488. https://doi.org/10.1146/annurev-immunol-032713-120156 24655297.
7. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015; 33:257–290. https://doi.org/10.1146/annurev-immunol-032414-112240 25581309.
8. Xia P, Wang S, Gao P, Gao G, Fan Z. DNA sensor cGAS-mediated immune recognition. Protein Cell. 2016; 7(11):777–791. https://doi.org/10.1007/s13238-016-0320-3 27696330.
9. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016; 17(10):1142–1149. https://doi.org/10.1038/ni.3558 27648547.
10. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013; 339(6121):786–791. https://doi.org/10.1126/science.1232458 23258413.
11. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013; 341(6152):1390–1394. https://doi.org/10.1126/science.1244040 23989956.
12. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015; 15(12):760–770. https://doi.org/10.1038/nri3921 26603901.
13. Reinert LS, Lopušná K, Winther H, Sun C, Thomsen MK, Nandakumar R, et al. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun. 2016; 7:13348. https://doi.org/10.1038/ncomms13348 27830700.
14. Ma Z, Jacobs SR, West JA, Stopford C, Zhang Z, Davis Z, et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci U S A. 2015; 112(31):E4306–15. https://doi.org/10.1073/pnas.1503831112 26199418.
15. Paijo J, Döring M, Spanier J, Grabski E, Nooruzzaman M, Schmidt T, et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog. 2016; 12(4):e1005546. https://doi.org/10.1371/journal.ppat.1005546 27058035.
16. Su C, Zheng C. Herpes Simplex Virus 1 Abrogates the cGAS/STING-mediated cytosolic DNA-sensing pathway via its virion host shutoff protein, UL41. J Virol. 2017; 91(6). https://doi.org/10.1128/JVI.02414-16 28077645.
17. Huang ZF, Zou HM, Liao BW, Zhang HY, Yang Y, Fu YZ, et al. Human cytomegalovirus protein UL31 inhibits DNA sensing of cGAS to mediate immune evasion. Cell Host Microbe. 2018; 24(1):69–80.e4. https://doi.org/10.1016/j.chom.2018.05.007 29937271.
18. Lupiani B, Lee LF, Cui X, Gimeno I, Anderson A, Morgan RW, et al. Marek’s disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc Natl Acad Sci U S A. 2004; 101(32):11815–11820. https://doi.org/10.1073/pnas.0404508101 15289599.
19. Nair V. Latency and tumorigenesis in Marek’s disease. Avian Dis. 2013; 57(2 Suppl):360–365. https://doi.org/10.1637/10470-121712-Reg.1 23901747.
20. Levy AM, Gilad O, Xia L, Izumiya Y, Choi J, Tsalenko A, et al. Marek’s disease virus Meq transforms chicken cells via the v-Jun transcriptional cascade: a converging transforming pathway for avian oncoviruses. Proc Natl Acad Sci U S A. 2005; 102(41):14831–14836. https://doi.org/10.1073/pnas.0506849102 16203997.
21. Levy AM, Izumiya Y, Brunovskis P, Xia L, Parcells MS, Reddy SM, et al. Characterization of the chromosomal binding sites and dimerization partners of the viral oncoprotein Meq in Marek’s disease virus-transformed T cells. J Virol. 2003; 77(23):12841–12851. https://doi.org/10.1128/jvi.77.23.12841-12851.2003 14610205.
22. Reinke AW, Grigoryan G, Keating AE. Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays. Biochemistry. 2010; 49(9):1985–1997. https://doi.org/10.1021/bi902065k 20102225.
23. Brown AC, Baigent SJ, Smith LP, Chattoo JP, Petherbridge LJ, Hawes P, et al. Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek’s disease virus. Proc Natl Acad Sci U S A. 2006; 103(6):1687–1692. https://doi.org/10.1073/pnas.0507595103 16446447.
24. Deng X, Li X, Shen Y, Qiu Y, Shi Z, Shao D, et al. The Meq oncoprotein of Marek’s disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Virol J. 2010; 7:348. https://doi.org/10.1186/1743-422X-7-348 21110861.
25. Liu JL, Ye Y, Lee LF, Kung HJ. Transforming potential of the herpesvirus oncoprotein MEQ: morphological transformation, serum-independent growth, and inhibition of apoptosis. J Virol. 1998; 72(1):388–395. 9420237.
26. Subramaniam S, Johnston J, Preeyanon L, Brown CT, Kung HJ, Cheng HH. Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by a Marek’s disease virus oncoprotein, Meq. J Virol. 2013; 87(16):9016–9029. https://doi.org/10.1128/JVI.01163-13 23740999.
27. Heidari M, Wang D, Delekta P, Sun S. Marek’s disease virus immunosuppression alters host cellular responses and immune gene expression in the skin of infected chickens. Vet Immunol Immunopathol. 2016; 180:21–28. https://doi.org/10.1016/j.vetimm.2016.08.013 27692091.
28. Gurung A, Kamble N, Kaufer BB, Pathan A, Behboudi S. Association of Marek’s Disease induced immunosuppression with activation of a novel regulatory T cells in chickens. PLoS Pathog. 2017; 13(12):e1006745. https://doi.org/10.1371/journal.ppat.1006745 29267390.
29. Cheng Y, Sun Y, Wang H, Yan Y, Ding C, Sun J. Chicken STING mediates activation of the IFN gene independently of the RIG-I gene. J Immunol. 2015; 195(8):3922–3936. https://doi.org/10.4049/jimmunol.1500638 26392466.
30. Chen S, Cheng A, Wang M. Innate sensing of viruses by pattern recognition receptors in birds. Vet Res. 2013; 44:82. https://doi.org/10.1186/1297-9716-44-82 24016341.
31. Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian interferons and their antiviral effectors. Front Immunol. 2017; 8:49. https://doi.org/10.3389/fimmu.2017.00049 28197148.
32. Ning S, Pagano JS, Barber GN. IRF7: activation, regulation, modification and function. Genes Immun. 2011; 12(6):399–414. https://doi.org/10.1038/gene.2011.21 21490621.
33. Jarosinski KW, Tischer BK, Trapp S, Osterrieder N. Marek’s disease virus: lytic replication, oncogenesis and control. Expert Rev Vaccines. 2006; 5(6):761–772. https://doi.org/10.1586/14760584.5.6.761 17184215.
34. Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek’s disease in chickens: a review with focus on immunology. Vet Res. 2016; 47(1):119. https://doi.org/10.1186/s13567-016-0404-3 27894330.
35. Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015; 33:445–474. https://doi.org/10.1146/annurev-immunol-032414-112043 25622193.
36. Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016; 19(2):150–158. https://doi.org/10.1016/j.chom.2016.01.010 26867174.
37. Zheng C. Evasion of cytosolic DNA-stimulated innate immune responses by herpes simplex virus 1. J Virol. 2018; 92(6). https://doi.org/10.1128/JVI.00099-17 29298887.
38. Deschamps T, Kalamvoki M. Evasion of the STING DNA-sensing pathway by VP11/12 of herpes simplex virus 1. J Virol. 2017; 91(16). https://doi.org/10.1128/JVI.00535-17 28592536.
39. Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert LS, et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J. 2016; 35(13):1385–1399. https://doi.org/10.15252/embj.201593458.
40. Choi HJ, Park A, Kang S, Lee E, Lee TA, Ra EA, et al. Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nat Commun. 2018; 9(1):125. https://doi.org/10.1038/s41467-017-02624-8 29317664.
41. Fu YZ, Su S, Gao YQ, Wang PP, Huang ZF, Hu MM, et al. Human cytomegalovirus tegument protein UL82 inhibits STING-mediated signaling to evade antiviral immunity. Cell Host Microbe. 2017; 21(2):231–243. https://doi.org/10.1016/j.chom.2017.01.001 28132838.
42. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008; 455(7213):674–678. https://doi.org/10.1038/nature07317 18724357.
43. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009; 461:788–792. https://doi.org/10.1038/nature08476 19776740.
44. Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 2012; 8(10):e1002934. https://doi.org/10.1371/journal.ppat.1002934 23055924.
45. Zhao Y, Kurian D, Xu H, Petherbridge L, Smith LP, Hunt L, et al. Interaction of Marek’s disease virus oncoprotein Meq with heat-shock protein 70 in lymphoid tumour cells. J Gen Virol. 2009; 90(Pt 9):2201–2208. https://doi.org/10.1099/vir.0.012062-0 19494050.
46. Li K, Qu S, Chen X, Wu Q, Shi M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci. 2017; 18(2). https://doi.org/10.3390/ijms18020404 28216575.
47. Diner BA, Lum KK, Toettcher JE, Cristea IM. Viral DNA sensors IFI16 and cyclic GMP-AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus infection. MBio. 2016; 7(6). https://doi.org/10.1128/mBio.01553-16 27935834.
48. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014; 41(5):830–842. https://doi.org/10.1016/j.immuni.2014.10.017 25517615.
49. Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A. 2015; 112(50):15408–15413. https://doi.org/10.1073/pnas.1512832112 26607445.
50. Corrales L, McWhirter SM, Dubensky TW Jr, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest. 2016; 126(7):2404–2411. https://doi.org/10.1172/JCI86892 27367184.
51. Ministry of Science and Technology of China (2017) Guide for the Care and Use of Laboratory Animals of the Ministry of Science and Technology of China (Central People’s Government of the People’s Republic of China, Beijing), 3rd Ed. http://www.gov.cn/gongbao/content/2017/content_5219148.htm. Accessed December 28, 2017.
52. Sick C, Schultz U, Münster U, Meier J, Kaspers B, Staeheli P. Promoter structures and differential responses to viral and nonviral inducers of chicken type I interferon genes. J Biol Chem. 1998; 273(16):9749–9754. https://doi.org/10.1074/jbc.273.16.9749 9545311.
53. Sun GR, Zhang YP, Zhou LY, Lv HC, Zhang F, Li K, et al. Co-Infection with Marek’s Disease Virus and Reticuloendotheliosis Virus Increases Illness Severity and Reduces Marek’s Disease Vaccine Efficacy. Viruses. 2017; 9(6). https://doi.org/10.3390/v9060158 28635675.
54. Morgan RW, Cantello JL, McDermott CH. Transfection of chicken embryo fibroblasts with Marek’s disease virus DNA. Avian Dis. 1990; 34(2):345–351. 2164390.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge
- Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize