#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Humoral immunity prevents clinical malaria during Plasmodium relapses without eliminating gametocytes


Autoři: Chester J. Joyner aff001;  Cristiana F. A. Brito aff001;  Celia L. Saney aff001;  Regina Joice Cordy aff001;  Maren L. Smith aff001;  Stacey A. Lapp aff001;  Monica Cabrera-Mora aff001;  Shuya Kyu aff002;  Nicolas Lackman aff001;  Mustafa V. Nural aff001;  Jeremy D. DeBarry aff001aff001;  Jessica C. Kissinger aff001;  Mark P. Styczynski aff001;  F. Eun-Hyung Lee aff001;  Tracey J. Lamb aff001;  Mary R. Galinski aff001
Působiště autorů: Malaria Host–Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America aff001;  Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States of America aff002;  Laboratory of Malaria, Centro de Pesquisas René Rachou–Fiocruz, Belo Horizonte, MG, Brazil aff003;  Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America aff004;  School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America aff005;  Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America aff006;  Department of Genetics, University of Georgia, Athens, GA, United States of America aff007;  Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America aff008;  Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States of America aff009;  Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States of America aff010;  Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States of America aff011
Vyšlo v časopise: Humoral immunity prevents clinical malaria during Plasmodium relapses without eliminating gametocytes. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1007974
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1007974

Souhrn

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify ‘bona fide’ relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi–rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.

Klíčová slova:

Medicine and health sciences – Parasitic diseases – Malaria – Immunology – Tropical diseases – Biology and life sciences – Cell biology – Cellular types – Animal cells – Immune cells – Antibody-producing cells – B cells – Blood cells – White blood cells – Germ cells – Gametocytes – Parasitology – Quantitative parasitology – Parasitemia – Parasite groups – Apicomplexa – Plasmodium – Organisms – Eukaryota – Protozoans – Parasitic protozoans – Malarial parasites – Animals – Vertebrates – Amniotes – Mammals – Primates – Monkeys – Old World monkeys – Macaque


Zdroje

1. Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. The American journal of tropical medicine and hygiene. 1982;31(6):1291–3. doi: 10.4269/ajtmh.1982.31.1291 6816080.

2. Adekunle AI, Pinkevych M, McGready R, Luxemburger C, White LJ, Nosten F, et al. Modeling the Dynamics of Plasmodium vivax Infection and Hypnozoite Reactivation In Vivo. PLoS neglected tropical diseases. 2015;9(3):e0003595. doi: 10.1371/journal.pntd.0003595 25780913

3. White MT, Karl S, Battle KE, Hay SI, Mueller I, Ghani AC. Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. Elife. 2014;3. doi: 10.7554/eLife.04692 25406065; PubMed Central PMCID: PMC4270097.

4. Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malaria journal. 2017;16(1):273. Epub 2017/07/06. doi: 10.1186/s12936-017-1925-6 28676055; PubMed Central PMCID: PMC5496604.

5. da Silva-Nunes M, Moreno M, Conn JE, Gamboa D, Abeles S, Vinetz JM, et al. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta tropica. 2012;121(3):281–91. Epub 2011/10/22. doi: 10.1016/j.actatropica.2011.10.001 22015425; PubMed Central PMCID: PMC3308722.

6. Cowell AN, Valdivia HO, Bishop DK, Winzeler EA. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome medicine. 2018;10(1):52. Epub 2018/07/06. doi: 10.1186/s13073-018-0563-0 29973248; PubMed Central PMCID: PMC6032790.

7. Popovici J, Friedrich LR, Kim S, Bin S, Run V, Lek D, et al. Genomic Analyses Reveal the Common Occurrence and Complexity of Plasmodium vivax Relapses in Cambodia. mBio. 2018;9(1). Epub 2018/01/25. doi: 10.1128/mBio.01888-17 29362233; PubMed Central PMCID: PMC5784252.

8. Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, et al. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax. PLoS neglected tropical diseases. 2016;10(3):e0004526. doi: 10.1371/journal.pntd.0004526 PMC4809505. 27018585

9. Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CS, et al. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. PLoS medicine. 2015;12(10):e1001891. Epub 2015/10/28. doi: 10.1371/journal.pmed.1001891 26505753; PubMed Central PMCID: PMC4624431.

10. Nelwan EJ, Ekawati LL, Tjahjono B, Setiabudy R, Sutanto I, Chand K, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC medicine. 2015;13:294. Epub 2015/12/15. doi: 10.1186/s12916-015-0535-9 26654101; PubMed Central PMCID: PMC4676167.

11. Joyner CJ, Barnwell JW, Galinski MR. No More Monkeying Around: Primate Malaria Model Systems are Key to Understanding Plasmodium vivax Liver-Stage Biology, Hypnozoites, and Relapses. Frontiers in microbiology. 2015;6. doi: 10.3389/fmicb.2015.00145 25859242

12. Joyner C, Moreno A, Meyer EVS, Cabrera-Mora M, Kissinger JC, Barnwell JW, et al. Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malaria journal. 2016;15(1):1–18. doi: 10.1186/s12936-016-1480-6 27590312

13. Joyner CJ, The MaHPIC Consortium, Wood JS, Moreno A, Garcia A, Galinski MR. Case Report: Severe and Complicated Cynomolgi Malaria in a Rhesus Macaque Resulted in Similar Histopathological Changes as Those Seen in Human Malaria. The American journal of tropical medicine and hygiene. 2017;97(2):548–55. doi: 10.4269/ajtmh.16-0742 28829738

14. Krotoski WA, Garnham PC, Bray RS, Krotoski DM, Killick-Kendrick R, Draper CC, et al. Observations on early and late post-sporozoite tissue stages in primate malaria. I. Discovery of a new latent form of Plasmodium cynomolgi (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. The American journal of tropical medicine and hygiene. 1982;31(1):24–35. Epub 1982/01/01. 7058977.

15. Schmidt LH. Compatibility of relapse patterns of Plasmodium cynomolgi infections in Rhesus monkeys with continuous cyclical development and hypnozoite concepts of relapse. The American journal of tropical medicine and hygiene. 1986;35.

16. Imwong M, Madmanee W, Suwannasin K, Kunasol C, Peto TJ, Tripura R, et al. Asymptomatic Natural Human Infections With the Simian Malaria Parasites Plasmodium cynomolgi and Plasmodium knowlesi. The Journal of infectious diseases. 2018;219(5):695–702. doi: 10.1093/infdis/jiy519 30295822

17. Singh B, Kadir KA, Hu TH, Raja TN, Mohamad DS, Lin LW, et al. Naturally acquired human infections with the simian malaria parasite, Plasmodium cynomolgi, in Sarawak, Malaysian Borneo. International Journal of Infectious Diseases. 2018;73:68. doi: 10.1016/j.ijid.2018.04.3581

18. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malaria journal. 2014;13:68. Epub 2014/02/26. doi: 10.1186/1475-2875-13-68 24564912; PubMed Central PMCID: PMC3937822.

19. Aikawa M, Miller LH, Rabbege J. Caveola—vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P cynomolgi. Unique structures related to Schuffner's dots. The American journal of pathology. 1975;79(2):285–300. Epub 1975/05/01. 50017; PubMed Central PMCID: PMC1912656.

20. Coatney GR, Collins W.E., Warren M., Contacos P.G. Primate Malarias. Washington DC: U. S. Dept. of Health, Education and Welfare; 1971.

21. Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012;44(9):1051–5. doi: 10.1038/ng.2375 22863735; PubMed Central PMCID: PMC3759362.

22. Pasini EM, Bohme U, Rutledge GG, Voorberg-Van der Wel A, Sanders M, Berriman M, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome open research. 2017;2:42. Epub 2017/07/28. doi: 10.12688/wellcomeopenres.11864.1 28748222; PubMed Central PMCID: PMC5500898.

23. Van den Eede P, Erhart A, Van der Auwera G, Van Overmeir C, Thang ND, Hung le X, et al. High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping. The American journal of tropical medicine and hygiene. 2010;82(2):223–7. Epub 2010/02/06. doi: 10.4269/ajtmh.2010.09-0458 20133996; PubMed Central PMCID: PMC2813161.

24. Van den Eede P, Soto-Calle VE, Delgado C, Gamboa D, Grande T, Rodriguez H, et al. Plasmodium vivax sub-patent infections after radical treatment are common in Peruvian patients: results of a 1-year prospective cohort study. PLoS One. 2011;6(1):e16257. Epub 2011/02/08. doi: 10.1371/journal.pone.0016257 21297986; PubMed Central PMCID: PMC3030575.

25. Cohen S, Mc GI, Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961;192:733–7. Epub 1961/11/25. doi: 10.1038/192733a0 13880318.

26. Briggs NT, Wellde BT, Sadun EH. Effects of rat antiserum on the course of Plasmodium berghei infection in mice. Military medicine. 1966;131(9):Suppl:1243–9. Epub 1966/09/01. 4957832.

27. Butcher GA, Cohen S, Garnham PCC. Passive immunity in Plasmodium knowlesi malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1970;64(6):850–6. doi: 10.1016/0035-9203(70)90104-5 4993013

28. Angulo I, Fresno M. Cytokines in the Pathogenesis of and Protection against Malaria. Clinical and diagnostic laboratory immunology. 2002;9(6):1145. doi: 10.1128/CDLI.9.6.1145-1152.2002 12414742

29. Gonçalves RM, Scopel KKG, Bastos MS, Ferreira MU. Cytokine Balance in Human Malaria: Does Plasmodium vivax Elicit More Inflammatory Responses than Plasmodium falciparum? PLOS ONE. 2012;7(9):e44394. doi: 10.1371/journal.pone.0044394 22973442

30. Kalantari P. The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. Vaccines. 2018;6(1). Epub 2018/03/03. doi: 10.3390/vaccines6010013 29495555; PubMed Central PMCID: PMC5874654.

31. Longley RJ, Sattabongkot J, Mueller I. Insights into the naturally acquired immune response to Plasmodium vivax malaria. Parasitology. 2016;143(2):154–70. Epub 2016/02/13. doi: 10.1017/S0031182015000670 26864134.

32. Mecham BH, Nelson PS, Storey JD. Supervised normalization of microarrays. Bioinformatics (Oxford, England). 2010;26(10):1308–15. doi: 10.1093/bioinformatics/btq118 PMC2865860. 20363728

33. Tang Y, Joyner CJ, Cabrera-Mora M, Saney CL, Lapp SA, Nural MV, et al. Integrative analysis associates monocytes with insufficient erythropoiesis during acute Plasmodium cynomolgi malaria in rhesus macaques. Malaria journal. 2017;16(1):384. Epub 2017/09/25. doi: 10.1186/s12936-017-2029-z 28938907; PubMed Central PMCID: PMC5610412.

34. Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Frontiers in immunology. 2012;3:302. Epub 2012/10/23. doi: 10.3389/fimmu.2012.00302 23087687; PubMed Central PMCID: PMC3467643.

35. Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V, Drees B, et al. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proceedings of the National Academy of Sciences. 2015;112(6):E546.

36. Fonseca LL, Joyner CJ, Saney CL, Moreno A, Barnwell JW, Galinski MR, et al. Analysis of erythrocyte dynamics in Rhesus macaque monkeys during infection with Plasmodium cynomolgi. Malaria journal. 2018;17(1):410. Epub 2018/11/08. doi: 10.1186/s12936-018-2560-6 30400896; PubMed Central PMCID: PMC6219197.

37. Chan CL, Rénia L, Tan KSW. A Simplified, Sensitive Phagocytic Assay for Malaria Cultures Facilitated by Flow Cytometry of Differentially-Stained Cell Populations. PLOS ONE. 2012;7(6):e38523. doi: 10.1371/journal.pone.0038523 22675573

38. Vallejo AF, García J, Amado-Garavito AB, Arévalo-Herrera M, Herrera S. Plasmodium vivax gametocyte infectivity in sub-microscopic infections. Malaria journal. 2016;15(1):48. doi: 10.1186/s12936-016-1104-1 26822406

39. Vallejo AF, Rubiano K, Amado A, Krystosik AR, Herrera S, Arévalo-Herrera M. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus. PLoS neglected tropical diseases. 2016;10(6):e0004807. doi: 10.1371/journal.pntd.0004807 PMC4927173. 27355210

40. Obaldia N, Meibalan E, Sa JM, Ma S, Clark MA, Mejia P, et al. Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. mBio. 2018;9(3).

41. Boyd MF. A review of studies on immunity to vivax malaria. J Natl Malar Soc. 1947;6.

42. Ndungu FM, Lundblom K, Rono J, Illingworth J, Eriksson S, Farnert A. Long-lived Plasmodium falciparum specific memory B cells in naturally exposed Swedish travelers. European journal of immunology. 2013;43(11):2919–29. Epub 2013/07/25. doi: 10.1002/eji.201343630 23881859; PubMed Central PMCID: PMC4114544.

43. Ndungu FM, Cadman ET, Coulcher J, Nduati E, Couper E, Macdonald DW, et al. Functional memory B cells and long-lived plasma cells are generated after a single Plasmodium chabaudi infection in mice. PLoS pathogens. 2009;5(12):e1000690. Epub 2009/12/17. doi: 10.1371/journal.ppat.1000690 20011127; PubMed Central PMCID: PMC2784955.

44. Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, et al. Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS pathogens. 2010;6(2):e1000770. doi: 10.1371/journal.ppat.1000770 20174609; PubMed Central PMCID: PMC2824751.

45. Neafsey DE, Galinsky K, Jiang RHY, Young L, Sykes SM, Saif S, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nature genetics. 2012;44:1046. doi: 10.1038/ng.2373 https://www.nature.com/articles/ng.2373#supplementary-information. 22863733

46. Koepfli C, Ross A, Kiniboro B, Smith TA, Zimmerman PA, Siba P, et al. Multiplicity and Diversity of Plasmodium vivax Infections in a Highly Endemic Region in Papua New Guinea. PLoS neglected tropical diseases. 2011;5(12):e1424. doi: 10.1371/journal.pntd.0001424 22206027

47. Pacheco MA, Lopez-Perez M, Vallejo AF, Herrera S, Arevalo-Herrera M, Escalante AA. Multiplicity of Infection and Disease Severity in Plasmodium vivax. PLoS neglected tropical diseases. 2016;10(1):e0004355. Epub 2016/01/12. doi: 10.1371/journal.pntd.0004355 26751811; PubMed Central PMCID: PMC4709143.

48. Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, et al. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. The American journal of tropical medicine and hygiene. 2017;96(3):630–41. Epub 2017/01/11. doi: 10.4269/ajtmh.16-0716 28070005; PubMed Central PMCID: PMC5361537.

49. Behet MC, Kurtovic L, van Gemert GJ, Haukes CM, Siebelink-Stoter R, Graumans W, et al. The Complement System Contributes to Functional Antibody-Mediated Responses Induced by Immunization with Plasmodium falciparum Malaria Sporozoites. Infection and immunity. 2018;86(7). Epub 2018/05/08. doi: 10.1128/iai.00920-17 29735521; PubMed Central PMCID: PMC6013677.

50. Zenklusen I, Jongo S, Abdulla S, Ramadhani K, Lee Sim BK, Cardamone H, et al. Immunization of Malaria-Preexposed Volunteers With PfSPZ Vaccine Elicits Long-Lived IgM Invasion-Inhibitory and Complement-Fixing Antibodies. The Journal of infectious diseases. 2018;217(10):1569–78. doi: 10.1093/infdis/jiy080 29438525

51. Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME, et al. Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood. 2004;104(12):3647–54. Epub 2004/06/12. doi: 10.1182/blood-2004-01-0346 15191950; PubMed Central PMCID: PMC2590648.

52. Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V, Drees B, et al. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proceedings of the National Academy of Sciences. 2015;112(6):E546–E55. doi: 10.1073/pnas.1416276112 25624468

53. Krishnamurty AT, Thouvenel CD, Portugal S, Keitany GJ, Kim KS, Holder A, et al. Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge. Immunity. 2016;45(2):402–14. Epub 2016/07/31. doi: 10.1016/j.immuni.2016.06.014 27473412; PubMed Central PMCID: PMC5118370.

54. Weaver R, Reiling L, Feng G, Drew DR, Mueller I, Siba PM, et al. The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Scientific reports. 2016;6:33094. doi: 10.1038/srep33094 27604417

55. França CT, He W-Q, Gruszczyk J, Lim NTY, Lin E, Kiniboro B, et al. Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children. PLoS neglected tropical diseases. 2016;10(9):e0005014. doi: 10.1371/journal.pntd.0005014 27677183

56. Boesch AW, Osei-Owusu NY, Crowley AR, Chu TH, Chan YN, Weiner JA, et al. Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses. Frontiers in immunology. 2016;7:589–. doi: 10.3389/fimmu.2016.00589 28018355.

57. White M, Amino R, Mueller I. Theoretical Implications of a Pre-Erythrocytic Plasmodium vivax Vaccine for Preventing Relapses. Trends in parasitology. 2017;33(4):260–3. doi: 10.1016/j.pt.2016.12.011 28077251

58. Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, et al. The anaemia of Plasmodium vivax malaria. Malaria journal. 2012;11:135. Epub 2012/05/01. doi: 10.1186/1475-2875-11-135 22540175; PubMed Central PMCID: PMC3438072.

59. Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119 (Pt 2):127–33. Epub 1999/08/31. doi: 10.1017/s0031182099004564 10466119.

60. Collins WE, Jeffery GM, Roberts JM. A retrospective examination of anemia during infection of humans with Plasmodium vivax. The American journal of tropical medicine and hygiene. 2003;68(4):410–2. Epub 2003/07/24. 12875288.

61. Fonseca LL, Alezi HS, Moreno A, Barnwell JW, Galinski MR, Voit EO. Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection. Malaria journal. 2016;15(1):1–15. doi: 10.1186/s12936-016-1465-5 27520455

62. Mourao LC, Baptista RP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, et al. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Scientific reports. 2018;8(1):8762. Epub 2018/06/10. doi: 10.1038/s41598-018-27109-6 29884876; PubMed Central PMCID: PMC5993813.

63. Mourao LC, Roma PM, Sultane Aboobacar Jda S, Medeiros CM, de Almeida ZB, Fontes CJ, et al. Anti-erythrocyte antibodies may contribute to anaemia in Plasmodium vivax malaria by decreasing red blood cell deformability and increasing erythrophagocytosis. Malaria journal. 2016;15(1):397. Epub 2016/08/05. doi: 10.1186/s12936-016-1449-5 27488382; PubMed Central PMCID: PMC4973037.

64. Fernandez-Arias C, Rivera-Correa J, Gallego-Delgado J, Rudlaff R, Fernandez C, Roussel C, et al. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia. Cell host & microbe. 2016;19(2):194–203. Epub 2016/02/13. doi: 10.1016/j.chom.2016.01.009 26867178; PubMed Central PMCID: PMC4861052.

65. Wampfler R, Hofmann NE, Karl S, Betuela I, Kinboro B, Lorry L, et al. Effects of liver-stage clearance by Primaquine on gametocyte carriage of Plasmodium vivax and P. falciparum. PLoS neglected tropical diseases. 2017;11(7):e0005753. Epub 2017/07/22. doi: 10.1371/journal.pntd.0005753 28732068; PubMed Central PMCID: PMC5540608.

66. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clinical microbiology reviews. 2011;24(2):377–410. Epub 2011/04/13. doi: 10.1128/CMR.00051-10 21482730; PubMed Central PMCID: PMC3122489.

67. De S. Naotunne T, Rathnayake KDL, Jayasinghe A, Carter R, Mendis KN. Plasmodium cynomolgi: Serum-mediated blocking and enhancement of infectivity to mosquitoes during infections in the natural host, Macaca sinica. Experimental parasitology. 1990;71(3):305–13. doi: 10.1016/0014-4894(90)90035-b 2209788

68. Boyd MF, Matthews CB. Further observations on the duration of immunity to the homologous strain of Plasmodium vivax. Am J Trop Med. 1939;s1–19.

69. Boyd MF, Stratman-Thomas WK, Kitchen SF. On the duration of acquired homologous immunity to Plasmodium vivax. Am J Trop Med. 1936;s1–16.

70. Boyd MF, Kitchen SF. On the efficiency of the homologous properties of acquired immunity to Plasmodium vivax. Am J Trop Med. 1936;s1–16.

71. Zimin AV, Cornish AS, Maudhoo MD, Gibbs RM, Zhang X, Pandey S, et al. A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biol Direct. 2014;9(1):20. Epub 2014/10/17. doi: 10.1186/1745-6150-9-20 25319552; PubMed Central PMCID: PMC4214606.

72. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9. Epub 09/25. doi: 10.1093/bioinformatics/btu638 25260700.

73. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. Epub 2014/12/18. doi: 10.1186/s13059-014-0550-8 25516281; PubMed Central PMCID: PMC4302049.

74. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 2015;43(7):e47. Epub 2015/01/22. doi: 10.1093/nar/gkv007 25605792; PubMed Central PMCID: PMC4402510.

75. Chan CL, Renia L, Tan KS. A simplified, sensitive phagocytic assay for malaria cultures facilitated by flow cytometry of differentially-stained cell populations. PLoS One. 2012;7(6):e38523. doi: 10.1371/journal.pone.0038523 22675573; PubMed Central PMCID: PMC3366917.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#