#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Innate and adaptive immunity associated with resolution of acute woodchuck hepatitis virus infection in adult woodchucks


Autoři: Manasa Suresh aff001;  Stefanie Czerwinski aff001;  Marta G. Murreddu aff001;  Bhaskar V. Kallakury aff002;  Ashika Ramesh aff003;  Severin O. Gudima aff004;  Stephan Menne aff001
Působiště autorů: Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America aff001;  Department of Pathology, Georgetown University Medical Center, Washington, DC, United States of America aff002;  Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America aff003;  Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America aff004
Vyšlo v časopise: Innate and adaptive immunity associated with resolution of acute woodchuck hepatitis virus infection in adult woodchucks. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008248
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008248

Souhrn

Viral and/or host factors that are directly responsible for the acute versus chronic outcome of hepatitis B virus (HBV) infection have not been identified yet. Information on immune response during the early stages of HBV infection in humans is mainly derived from blood samples of patients with acute hepatitis B (AHB), which are usually obtained after the onset of clinical symptoms. Features of intrahepatic immune response in these patients are less studied due to the difficulty of obtaining multiple liver biopsies. Woodchuck hepatitis virus (WHV) infection in woodchucks is a model for HBV infection in humans. In the present study, five adult woodchucks were experimentally infected with WHV and then followed for 18 weeks. Blood and liver tissues were frequently collected for assaying markers of WHV replication and innate and adaptive immune responses. Liver tissues were further analyzed for pathological changes and stained for important immune cell subsets and cytokines. The increase and subsequent decline of viral replication markers in serum and liver, the elicitation of antibodies against viral proteins, and the induction of virus-specific T-cell responses indicated eventual resolution of acute WHV infection in all animals. Intrahepatic innate immune makers stayed unchanged immediately after the infection, but increased markedly during resolution, as determined by changes in transcript levels. The presence of interferon-gamma and expression of natural killer (NK) cell markers suggested that a non-cytolytic response mechanism is involved in the initial viral control in liver. This was followed by the expression of T-cell markers and cytolytic effector molecules, indicating the induction of a cytolytic response mechanism. Parallel increases in regulatory T-cell markers suggested that this cell subset participates in the overall immune cell infiltration in liver and/or has a role in regulating AHB induced by the cytolytic response mechanism. Since the transcript levels of immune cell markers in blood, when detectable, were lower than in liver, and the kinetics, except for NK-cells and interferon-gamma, did not correlate well with their intrahepatic expression, this further indicated enrichment of immune cells within liver. Conclusion: The coordinated interplay of innate and adaptive immunity mediates viral clearance in the woodchuck animal model of HBV infection. The initial presence of NK-cell associated interferon-gamma response points to an important role of this cytokine in HBV resolution.

Klíčová slova:

Antibodies – Blood – Cytotoxic T cells – Hepatitis B virus – Immune cells – Immune response – T cells – Viral replication


Zdroje

1. WHO | Hepatitis B. In: WHO [Internet]. [cited 18 May 2017]. Available: http://www.who.int/mediacentre/factsheets/fs204/en/

2. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Reviews Immunology. 2005;5: 215–229. doi: 10.1038/nri1573 15738952

3. Liang TJ. Hepatitis B: The Virus and Disease. Hepatology. 2009;49: S13–S21. doi: 10.1002/hep.22881 19399811

4. Vyas AK, Negi P, Patra S, Maras JS, Ramakrishna G, Sarin SK, et al. Maternal Immunity Influences Vertical Transmission of Hepatitis B to Newborns. Hepatol Commun. 2019;3: 795–811. doi: 10.1002/hep4.1351 31168514

5. Hong M, Sandalova E, Low D, Gehring AJ, Fieni S, Amadei B, et al. Trained immunity in newborn infants of HBV-infected mothers. Nature Communications. 2015;6: 6588. doi: 10.1038/ncomms7588 25807344

6. Liang TJ, Block TM, McMahon BJ, Ghany MG, Urban S, Guo J-T, et al. Present and Future Therapies of Hepatitis B: From Discovery to Cure. Hepatology. 2015;62: 1893–1908. doi: 10.1002/hep.28025 26239691

7. Ferrari C. HBV and the immune response. Liver International. 2015;35: 121–128. doi: 10.1111/liv.12749 25529097

8. Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, Brendish N, et al. Temporal Analysis of Early Immune Responses in Patients With Acute Hepatitis B Virus Infection. Gastroenterology. 2009;137: 1289–1300. doi: 10.1053/j.gastro.2009.06.054 19591831

9. Stelma F, Willemse SB, Erken R, de Niet A, Sinnige MJ, van Dort K, et al. Dynamics of the Immune Response in Acute Hepatitis B Infection. Open Forum Infect Dis. 2017;4. doi: 10.1093/ofid/ofx231 29302605

10. Tan A, Koh S, Bertoletti A. Immune Response in Hepatitis B Virus Infection. Cold Spring Harb Perspect Med. 2015;5. doi: 10.1101/cshperspect.a021428 26134480

11. Menne S, Cote PJ. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol. 2007;13: 104–124. doi: 10.3748/wjg.v13.i1.104 17206759

12. Menne S, Maschke J, Lu M, Grosse-Wilde H, Roggendorf M. T-Cell Response to Woodchuck Hepatitis Virus (WHV) Antigens during Acute Self-Limited WHV Infection and Convalescence and after Viral Challenge. J Virol. 1998;72: 6083–6091. 9621072

13. Menne S, Roneker CA, Roggendorf M, Gerin JL, Cote PJ, Tennant BC. Deficiencies in the Acute-Phase Cell-Mediated Immune Response to Viral Antigens Are Associated with Development of Chronic Woodchuck Hepatitis Virus Infection following Neonatal Inoculation. J Virol. 2002;76: 1769–1780. doi: 10.1128/JVI.76.4.1769-1780.2002 11799172

14. Wang Y, Menne S, Jacob JR, Tennant BC, Gerin JL, Cote PJ. Role of type 1 versus type 2 immune responses in liver during the onset of chronic woodchuck hepatitis virus infection. Hepatology. 2003;37: 771–780. doi: 10.1053/jhep.2003.50154 12668969

15. Fletcher SP, Chin DJ, Cheng DT, Ravindran P, Bitter H, Gruenbaum L, et al. Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B. Hepatology. 2013;57: 13–22. doi: 10.1002/hep.25954 22806943

16. Guy CS, Mulrooney-Cousins PM, Churchill ND, Michalak TI. Intrahepatic Expression of Genes Affiliated with Innate and Adaptive Immune Responses Immediately after Invasion and during Acute Infection with Woodchuck Hepadnavirus. J Virol. 2008;82: 8579–8591. doi: 10.1128/JVI.01022-08 18596101

17. Freitas N, Lukash T, Rodrigues L, Litwin S, Kallakury BV, Menne S, et al. Infection Patterns Induced in Naive Adult Woodchucks by Virions of Woodchuck Hepatitis Virus Collected during either the Acute or Chronic Phase of Infection. J Virol. 2015;89: 8749–8763. doi: 10.1128/JVI.00984-15 26063428

18. Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. Journal of Autoimmunity. 2017;83: 1–11. doi: 10.1016/j.jaut.2017.03.008 28330758

19. Orr MT, Lanier LL. Natural Killer Cell Education and Tolerance. Cell. 2010;142: 847–856. doi: 10.1016/j.cell.2010.08.031 20850008

20. Chester C, Fritsch K, Kohrt HE. Natural Killer Cell Immunomodulation: Targeting Activating, Inhibitory, and Co-stimulatory Receptor Signaling for Cancer Immunotherapy. Front Immunol. 2015;6: 601. doi: 10.3389/fimmu.2015.00601 26697006

21. Montaldo E, Zotto GD, Chiesa MD, Mingari MC, Moretta A, Maria AD, et al. Human NK cell receptors/markers: A tool to analyze NK cell development, subsets and function: Human NK Cell Receptors/Markers. Cytometry. 2013;83A: 702–713. doi: 10.1002/cyto.a.22302 23650273

22. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16: 343–353. doi: 10.1038/ni.3123 25789684

23. Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. Journal of Hepatology. 2016;64: S71–S83. doi: 10.1016/j.jhep.2016.01.026 27084039

24. Pardo J, Bosque A, Brehm R, Wallich R, Naval J, Müllbacher A, et al. Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. J Cell Biol. 2004;167: 457–468. doi: 10.1083/jcb.200406115 15534000

25. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology. 2008;26: 677–704. doi: 10.1146/annurev.immunol.26.021607.090331 18173375

26. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96: 41–101. doi: 10.1016/S0065-2776(07)96002-2 17981204

27. Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A, et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut. 2009;58: 974–982. doi: 10.1136/gut.2008.163600 19201769

28. Webster GJM, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, et al. Incubation phase of acute hepatitis B in man: Dynamic of cellular immune mechanisms. Hepatology. 2000;32: 1117–1124. doi: 10.1053/jhep.2000.19324 11050064

29. Glebe D, Lorenz H, Gerlich WH, Butler SD, Tochkov IA, Tennant BC, et al. Correlation of Virus and Host Response Markers with Circulating Immune Complexes during Acute and Chronic Woodchuck Hepatitis Virus Infection. J Virol. 2009;83: 1579–1591. doi: 10.1128/JVI.01934-08 19052077

30. Hodgson PD, Michalak TI. Augmented hepatic interferon gamma expression and T-cell influx characterize acute hepatitis progressing to recovery and residual lifelong virus persistence in experimental adult woodchuck hepatitis virus infection. Hepatology. 2001;34: 1049–1059. doi: 10.1053/jhep.2001.29004 11679978

31. Cote PJ, Korba BE, Miller RH, Jacob JR, Baldwin BH, Hornbuckle WE, et al. Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology. 2000;31: 190–200. doi: 10.1002/hep.510310128 10613745

32. Fletcher SP, Chin DJ, Ji Y, Iniguez AL, Taillon B, Swinney DC, et al. Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology. 2012;56: 820–830. doi: 10.1002/hep.25730 22431061

33. Cheng X, Xia Y, Serti E, Block PD, Chung M, Chayama K, et al. Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology. 2017;66: 1779–1793. doi: 10.1002/hep.29348 28665004

34. Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B Virus Does Not Interfere With Innate Immune Responses in the Human Liver. Gastroenterology. 2018;154: 1778–1790. doi: 10.1053/j.gastro.2018.01.034 29408639

35. Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. PNAS. 2004;101: 6669–6674. doi: 10.1073/pnas.0401771101 15100412

36. Menne S, Tennant BC, Gerin JL, Cote PJ. Chemoimmunotherapy of Chronic Hepatitis B Virus Infection in the Woodchuck Model Overcomes Immunologic Tolerance and Restores T-Cell Responses to Pre-S and S Regions of the Viral Envelope Protein. J Virol. 2007;81: 10614–10624. doi: 10.1128/JVI.00691-07 17652398

37. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A. 1990;87: 6599–6603. doi: 10.1073/pnas.87.17.6599 2395863

38. Tian Y, Kuo C, Akbari O, Ou JJ. Maternal-derived hepatitis B virus e antigen alters macrophage function in offspring to drive viral persistence after vertical transmission. Immunity. 2016;44: 1204–1214. doi: 10.1016/j.immuni.2016.04.008 27156385

39. Sprengers D, Molen RG van der, Kusters JG, Man RAD, Niesters HGM, Schalm SW, et al. Analysis of intrahepatic HBV-specific cytotoxic T-cells during and after acute HBV infection in humans. Journal of Hepatology. 2006;45: 182–189. doi: 10.1016/j.jhep.2005.12.022 16516331

40. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17: 189–220. doi: 10.1146/annurev.immunol.17.1.189 10358757

41. Zhang Z, Zhang J, Wherry EJ, Jin B, Xu B, Zou Z, et al. Dynamic Programmed Death 1 Expression by Virus-Specific CD8 T Cells Correlates With the Outcome of Acute Hepatitis B. Gastroenterology. 2008;134: 1938–1949.e3. doi: 10.1053/j.gastro.2008.03.037 18455515

42. Suslov A, Wieland S, Menne S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Current Opinion in Virology. 2018;30: 9–17. doi: 10.1016/j.coviro.2018.01.008 29444493

43. Liu J, Zhang E, Ma Z, Wu W, Kosinska A, Zhang X, et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog. 2014;10: e1003856. doi: 10.1371/journal.ppat.1003856 24391505

44. Jo J, Tan AT, Ussher JE, Sandalova E, Tang X-Z, Tan-Garcia A, et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 2014;10: e1004210. doi: 10.1371/journal.ppat.1004210 24967632

45. Daffis S, Chamberlain J, Zheng J, Santos R, Rowe W, Mish M, et al. Sustained efficacy and surface antigen seroconversion in the woodchuck model of chronic hepatitis B with the selective toll-like receptor 8 agonist GS-9688. Journal of Hepatology. 2017;66: S692–S693. doi: 10.1016/S0168-8278(17)31859-7

46. Hornbuckle WE, Graham ES, Roth L, Baldwin BH, Wickenden C, Tennant BC. Laboratory assessment of hepatic injury in the woodchuck (Marmota monax). Lab Anim Sci. 1985;35: 376–381. 2864472

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#