A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition
Autoři:
Yuying Han aff001; Tietao Wang aff001; Gukui Chen aff001; Qinqin Pu aff002; Qiong Liu aff003; Yani Zhang aff001; Linghui Xu aff003; Min Wu aff002; Haihua Liang aff001
Působiště autorů:
Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
aff001; Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
aff002; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, GuangDong, China
aff003
Vyšlo v časopise:
A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008198
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008198
Souhrn
The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria, whose function is known to translocate substrates to eukaryotic and prokaryotic target cells to cause host damage or as a weapon for interbacterial competition. Pseudomonas aeruginosa encodes three distinct T6SS clusters (H1-, H2-, and H3-T6SS). The H1-T6SS-dependent substrates have been identified and well characterized; however, only limited information is available for the H2- and H3-T6SSs since relatively fewer substrates for them have yet been established. Here, we obtained P. aeruginosa H2-T6SS-dependent secretomes and further characterized the H2-T6SS-dependent copper (Cu2+)-binding effector azurin (Azu). Our data showed that both azu and H2-T6SS were repressed by CueR and were induced by low concentrations of Cu2+. We also identified the Azu-interacting partner OprC, a Cu2+-specific TonB-dependent outer membrane transporter. Similar to H2-T6SS genes and azu, expression of oprC was directly regulated by CueR and was induced by low Cu2+. In addition, the Azu-OprC-mediated Cu2+ transport system is critical for P. aeruginosa cells in bacterial competition and virulence. Our findings provide insights for understanding the diverse functions of T6SSs and the role of metal ions for P. aeruginosa in bacteria-bacteria competition.
Klíčová slova:
Glutathione chromatography – Outer membrane proteins – Plasmid construction – Polymerase chain reaction – Pseudomonas aeruginosa – Secretion – Secretion systems – Signal peptides
Zdroje
1. Shi X, Darwin KH. (2015) Copper homeostasis in Mycobacterium tuberculosis. Metallomics 7: 929–34. doi: 10.1039/c4mt00305e 25614981
2. Arguello JM, Raimunda D, Padilla-Benavides T. (2013) Mechanisms of copper homeostasis in bacteria. Front Cell Infect Microbiol 3: 73. doi: 10.3389/fcimb.2013.00073 24205499
3. Rensing C, Grass G. (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27: 197–213. doi: 10.1016/S0168-6445(03)00049-4 12829268
4. Hood MI, Skaar EP. (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10: 525–37. doi: 10.1038/nrmicro2836 22796883
5. Outten FW, Outten CE, Hale J, O'Halloran TV. (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275: 31024–9. doi: 10.1074/jbc.M006508200 10915804
6. Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, et al. (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3: 60–8. doi: 10.1038/nchembio844 17143269
7. Strausak D, Solioz M. (1997) CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272: 8932–6. doi: 10.1074/jbc.272.14.8932 9083014
8. Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR. (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188: 7242–56. doi: 10.1128/JB.00837-06 17015663
9. Gourdon P, Liu XY, Skjorringe T, Morth JP, Moller LB, Pedersen BP, et al. (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475: 59–64. doi: 10.1038/nature10191 21716286
10. Nar H, Messerschmidt A, Huber R, van de Kamp M, Canters GW. (1992) Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 A resolution. Febs Letters 306: 119–24. doi: 10.1016/0014-5793(92)80981-l 1633865
11. Zhang XX, Rainey PB. (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10: 3284–94. doi: 10.1111/j.1462-2920.2008.01720.x 18707611
12. Quintana J, Novoa-Aponte L, Arguello JM. (2017) Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. J Biol Chem 292: 15691–704. doi: 10.1074/jbc.M117.804492 28760827
13. Silverman JM, Brunet YR, Cascales E, Mougous JD. (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66: 453–72. doi: 10.1146/annurev-micro-121809-151619 22746332
14. Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25–37. doi: 10.1016/j.chom.2009.12.007 20114026
15. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–7. doi: 10.1038/nature10244 21776080
16. Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, Wiggins PA, et al. (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496: 508–12. doi: 10.1038/nature12074 23552891
17. Coulthurst S. (2019) The Type VI secretion system: a versatile bacterial weapon. Microbiology 165: 503–15. doi: 10.1099/mic.0.000789 30893029
18. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526–30. doi: 10.1126/science.1128393 16763151
19. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, et al. (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6: e1001068. doi: 10.1371/journal.ppat.1001068 20865170
20. Zhang W, Wang Y, Song Y, Wang T, Xu S, Peng Z, et al. (2013) A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol 15: 557–69. doi: 10.1111/1462-2920.12005 23094603
21. Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, et al. (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep 16: 1502–9. doi: 10.1016/j.celrep.2016.07.012 27477276
22. Sana TG, Baumann C, Merdes A, Soscia C, Rattei T, Hachani A, et al. (2015) Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio 6: e00712. doi: 10.1128/mBio.00712-15 26037124
23. Jiang F, Waterfield NR, Yang J, Yang G, Jin Q. (2014) A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15: 600–10. doi: 10.1016/j.chom.2014.04.010 24832454
24. Lin J, Zhang W, Cheng J, Yang X, Zhu K, Wang Y, et al. (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 8: 14888. doi: 10.1038/ncomms14888 28348410
25. Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, et al. (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 114: 7707–12. doi: 10.1073/pnas.1700286114 28673999
26. Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG. (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3: 632–40. doi: 10.1038/s41564-018-0144-4 29632369
27. Sana TG, Hachani A, Bucior I, Soscia C, Garvis S, Termine E, et al. (2012) The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem 287: 27095–105. doi: 10.1074/jbc.M112.376368 22665491
28. Sana TG, Soscia C, Tonglet CM, Garvis S, Bleves S. (2013) Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One 8: e76030. doi: 10.1371/journal.pone.0076030 24204589
29. Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13: 3128–38. doi: 10.1111/j.1462-2920.2011.02595.x 21955777
30. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–64. doi: 10.1038/35023079 10984043
31. Imperi F, Ciccosanti F, Perdomo AB, Tiburzi F, Mancone C, Alonzi T, et al. (2009) Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics 9: 1901–15. doi: 10.1002/pmic.200800618 19333994
32. Tsirigotaki A, De Geyter J, Sostaric N, Economou A, Karamanou S. (2017) Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15: 21–36. doi: 10.1038/nrmicro.2016.161 27890920
33. Seo J, Darwin AJ. (2013) The Pseudomonas aeruginosa Periplasmic Protease CtpA Can Affect Systems That Impact Its Ability To Mount Both Acute and Chronic Infections. Infect Immun 81: 4561–70. doi: 10.1128/IAI.01035-13 24082078
34. Hoge R, Laschinski M, Jaeger KE, Wilhelm S, Rosenau F. (2011) The subcellular localization of a C-terminal processing protease in Pseudomonas aeruginosa. FEMS Microbiol Lett 316: 23–30. doi: 10.1111/j.1574-6968.2010.02181.x 21204920
35. Bleves S, Gerard-Vincent M, Lazdunski A, Filloux A. (1999) Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol 181: 4012–9. 10383969
36. Cascales E, Cambillau C. (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci 367: 1102–11. doi: 10.1098/rstb.2011.0209 22411981
37. Durand E, Cambillau C, Cascales E, Journet L. (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 22: 498–507. doi: 10.1016/j.tim.2014.06.004 25042941
38. Thaden JT, Lory S, Gardner TS. (2010) Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol 192: 2557–68. doi: 10.1128/JB.01528-09 20233934
39. Adaikkalam V, Swarup S. (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148: 2857–67. doi: 10.1099/00221287-148-9-2857 12213931
40. Schwan WR, Warrener P, Keunz E, Stover CK, Folger KR. (2005) Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 295: 237–42. doi: 10.1016/j.ijmm.2005.05.005 16128398
41. Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, et al. (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108: 1621–6. doi: 10.1073/pnas.1009261108 21205886
42. Lesic B, Starkey M, He J, Hazan R, Rahme LG. (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155: 2845–55. doi: 10.1099/mic.0.029082-0 19497948
43. Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K, Iida T, et al. (2019) Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat Microbiol 4: 781–8. doi: 10.1038/s41564-019-0368-y 30778145
44. Si M, Zhao C, Burkinshaw B, Zhang B, Wei D, Wang Y, et al. (2017) Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 114: E2233–E42. doi: 10.1073/pnas.1614902114 28242693
45. Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, et al. (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog 11: e1005020. doi: 10.1371/journal.ppat.1005020 26134274
46. Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, et al. (2016) Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 6: 32950. doi: 10.1038/srep32950 27605490
47. Burtnick MN, Brett PJ. (2013) Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc. PLoS One 8: e76767. doi: 10.1371/journal.pone.0076767 24146925
48. Poole K, Neshat S, Krebes K, Heinrichs DE. (1993) Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J Bacteriol 175: 4597–604. doi: 10.1128/jb.175.15.4597-4604.1993 8335619
49. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86. doi: 10.1016/s0378-1119(98)00130-9 9661666
50. Wehmhoner D, Haussler S, Tummler B, Jansch L, Bredenbruch F, Wehland J, et al. (2003) Inter- and Intraclonal Diversity of the Pseudomonas aeruginosa Proteome Manifests within the Secretome. J Bacteriol 185: 5807–14. doi: 10.1128/JB.185.19.5807-5814.2003 13129952
51. Liu Y, Zhang Q, Hu M, Yu K, Fu J, Zhou F, et al. (2015) Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells. Infect Immun 83: 2897–906. doi: 10.1128/IAI.02882-14 25939512
52. Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE, et al. (2010) An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog 6: e1000969. doi: 10.1371/journal.ppat.1000969 20617164
53. Dekker N, Merck K, Tommassen J, Verheij HM. (1995) In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232: 214–9. doi: 10.1111/j.1432-1033.1995.tb20801.x 7556153
54. Xu SJ, Peng Z, Cui BY, Wang T, Song Y, Zhang L, et al. (2014) FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environmental Microbiology 16: 1090–104. doi: 10.1111/1462-2920.12222 23957589
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency