#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Herpes simplex encephalitis in adult patients with MASP-2 deficiency


Autoři: Stéphanie Bibert aff001;  Jocelyne Piret aff002;  Mathieu Quinodoz aff003;  Emilie Collinet aff001;  Vincent Zoete aff004;  Olivier Michielin aff004;  Rafik Menasria aff002;  Pascal Meylan aff001;  Titus Bihl aff008;  Véronique Erard aff008;  Florence Fellmann aff009;  Carlo Rivolta aff003;  Guy Boivin aff002;  Pierre-Yves Bochud aff001
Působiště autorů: Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland aff001;  Research center in Infectious Diseases, CHU of Quebec and Laval University, Quebec city, Canada aff002;  Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne Switzerland aff003;  Ludwig Institute for Cancer research, University of Lausanne, Lausanne, Switzerland aff004;  Molecular Modeling Group, Swiss Institute of Bioinformatics, Quartier Sorge, Génopode, Lausanne, Switzerland aff005;  Department of Oncology, University Hospital and University of Lausanne, Lausanne, Switzerland aff006;  Institute of Microbiology, Department of Laboratory Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland aff007;  Canton Hospital of Fribourg, Fribourg, Switzerland aff008;  Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg aff009;  Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom aff010
Vyšlo v časopise: Herpes simplex encephalitis in adult patients with MASP-2 deficiency. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008168
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008168

Souhrn

We report here two cases of Herpes simplex virus encephalitis (HSE) in adult patients with very rare, previously uncharacterized, non synonymous heterozygous G634R and R203W substitution in mannan-binding lectin serine protease 2 (MASP2), a gene encoding a key protease of the lectin pathway of the complement system. None of the 2 patients had variants in genes involved in the TLR3-interferon signaling pathway. Both MASP2 variants induced functional defects in vitro, including a reduced (R203W) or abolished (G634R) protein secretion, a lost capability to cleave MASP-2 precursor into its active form (G634R) and an in vivo reduced antiviral activity (G634R). In a murine model of HSE, animals deficient in mannose binding lectins (MBL, the main pattern recognition molecule associated with MASP-2) had a decreased survival rate and an increased brain burden of HSV-1 compared to WT C57BL/6J mice. Altogether, these data suggest that MASP-2 deficiency can increase susceptibility to adult HSE.

Klíčová slova:

Alleles – Complement system – Cytokines – Chemokines – Molecular dynamics – Mouse models – Sequence motif analysis – Lectins


Zdroje

1. Piret J, Boivin G. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies. Reviews in medical virology. 2015;25(5):300–19. Epub 2015/07/25. doi: 10.1002/rmv.1848 26205506.

2. Koskiniemi M, Piiparinen H, Mannonen L, Rantalaiho T, Vaheri A. Herpes encephalitis is a disease of middle aged and elderly people: polymerase chain reaction for detection of herpes simplex virus in the CSF of 516 patients with encephalitis. The Study Group. J Neurol Neurosurg Psychiatry. 1996;60(2):174–8. Epub 1996/02/01. doi: 10.1136/jnnp.60.2.174 8708648; PubMed Central PMCID: PMC1073799.

3. De Tiege X, Rozenberg F, Heron B. The spectrum of herpes simplex encephalitis in children. Eur J Paediatr Neurol. 2008;12(2):72–81. Epub 2007/09/18. doi: 10.1016/j.ejpn.2007.07.007 17870623.

4. Whitley RJ, Gnann JW. Viral encephalitis: familiar infections and emerging pathogens. Lancet. 2002;359(9305):507–13. Epub 2002/02/21. doi: 10.1016/S0140-6736(02)07681-X 11853816.

5. Zhang SY, Herman M, Ciancanelli MJ, Perez de Diego R, Sancho-Shimizu V, Abel L, et al. TLR3 immunity to infection in mice and humans. Current opinion in immunology. 2013;25(1):19–33. Epub 2013/01/08. doi: 10.1016/j.coi.2012.11.001 23290562; PubMed Central PMCID: PMC3594520.

6. Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91. doi: 10.1038/ng1097 12590259

7. Niehues T, Reichenbach J, Neubert J, Gudowius S, Puel A, Horneff G, et al. A NEMO-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol. 2004;114:1456–62. doi: 10.1016/j.jaci.2004.08.047 15577852

8. Puel A, Reichenbach J, Bustamante J, Ku CL, Feinberg J, Doffinger R, et al. The NEMO Mutation Creating the Most-Upstream Premature Stop Codon Is Hypomorphic Because of a Reinitiation of Translation. Am J Hum Genet. 2006;78(4):691–701. doi: 10.1086/501532 16532398.

9. Audry M, Ciancanelli M, Yang K, Cobat A, Chang HH, Sancho-Shimizu V, et al. NEMO is a key component of NF-kappaB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. The Journal of allergy and clinical immunology. 2011;128(3):610–7 e1-4. Epub 2011/07/05. doi: 10.1016/j.jaci.2011.04.059 21722947; PubMed Central PMCID: PMC3164951.

10. Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314(5797):308–12. Epub 2006/09/16. doi: 10.1126/science.1128346 16973841.

11. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7. Epub 2007/09/18. doi: 10.1126/science.1139522 17872438.

12. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. The Journal of experimental medicine. 2011;208(10):2083–98. Epub 2011/09/14. doi: 10.1084/jem.20101568 21911422; PubMed Central PMCID: PMC3182056.

13. Sancho-Shimizu V, Perez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121(12):4889–902. Epub 2011/11/23. doi: 10.1172/JCI59259 22105173; PubMed Central PMCID: PMC3226004.

14. Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, Pauwels E, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. The Journal of experimental medicine. 2012;209(9):1567–82. Epub 2012/08/02. doi: 10.1084/jem.20111316 22851595; PubMed Central PMCID: PMC3428952.

15. Lim HK, Seppanen M, Hautala T, Ciancanelli MJ, Itan Y, Lafaille FG, et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology. 2014;83(21):1888–97. doi: 10.1212/WNL.0000000000000999 25339207; PubMed Central PMCID: PMC4248460.

16. Sironi M, Peri AM, Cagliani R, Forni D, Riva S, Biasin M, et al. TLR3 Mutations in Adult Patients With Herpes Simplex Virus and Varicella-Zoster Virus Encephalitis. J Infect Dis. 2017;215(9):1430–4. Epub 2017/04/04. doi: 10.1093/infdis/jix166 28368532.

17. Mork N, Kofod-Olsen E, Sorensen KB, Bach E, Orntoft TF, Ostergaard L, et al. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun. 2015;16(8):552–66. Epub 2015/10/30. doi: 10.1038/gene.2015.46 26513235.

18. Abdelmagid N, Bereczky-Veress B, Atanur S, Musilova A, Zidek V, Saba L, et al. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis. PLoS One. 2016;11(5):e0155832. Epub 2016/05/26. doi: 10.1371/journal.pone.0155832 27224245; PubMed Central PMCID: PMC4880288.

19. Fuchs A, Pinto AK, Schwaeble WJ, Diamond MS. The lectin pathway of complement activation contributes to protection from West Nile virus infection. Virology. 2011;412(1):101–9. Epub 2011/01/29. doi: 10.1016/j.virol.2011.01.003 21269656; PubMed Central PMCID: PMC3057364.

20. Meylan S, Robert D, Estrade C, Grimbuehler V, Peter O, Meylan PR, et al. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2008;41(2):87–91. Epub 2007/11/27. doi: 10.1016/j.jcv.2007.10.010 18037340.

21. Friedman HM, Wang L, Pangburn MK, Lambris JD, Lubinski J. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J Immunol. 2000;165(8):4528–36. Epub 2000/10/18. 11035093.

22. Ledford H. Engineered antibodies cross blood–brain barrier. Nature. 2011. doi: 10.1038/news.2011.319

23. Daniels CA, Borsos T, Rapp HJ, Snyderman R, Notkins AL. Neutralization of sensitized virus by purified components of complement. Proc Natl Acad Sci U S A. 1970;65(3):528–35. Epub 1970/03/01. doi: 10.1073/pnas.65.3.528 4315612; PubMed Central PMCID: PMC282939.

24. Lachmann PJ, Davies A. Complement and immunity to viruses. Immunological reviews. 1997;159:69–77. Epub 1998/01/07. doi: 10.1111/j.1600-065x.1997.tb01007.x 9416503.

25. Da Costa XJ, Brockman MA, Alicot E, Ma M, Fischer MB, Zhou X, et al. Humoral response to herpes simplex virus is complement-dependent. Proc Natl Acad Sci U S A. 1999;96(22):12708–12. Epub 1999/10/27. doi: 10.1073/pnas.96.22.12708 10535987; PubMed Central PMCID: PMC23060.

26. Brockman MA, Knipe DM. Herpes simplex virus as a tool to define the role of complement in the immune response to peripheral infection. Vaccine. 2008;26 Suppl 8:I94–9. Epub 2009/04/24. doi: 10.1016/j.vaccine.2008.11.062 19388172; PubMed Central PMCID: PMC2742331.

27. Friedman HM. Immune evasion by herpes simplex virus type 1, strategies for virus survival. Trans Am Clin Climatol Assoc. 2003;114:103–12. Epub 2003/06/20. 12813914; PubMed Central PMCID: PMC2194497.

28. Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS, Sundaresan P, et al. In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol. 1998;72(7):5351–9. Epub 1998/06/17. 9620988; PubMed Central PMCID: PMC110157.

29. McNearney TA, Odell C, Holers VM, Spear PG, Atkinson JP. Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infectivity. J Exp Med. 1987;166(5):1525–35. Epub 1987/11/01. doi: 10.1084/jem.166.5.1525 2824652; PubMed Central PMCID: PMC2189652.

30. Friedman HM, Wang L, Fishman NO, Lambris JD, Eisenberg RJ, Cohen GH, et al. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol. 1996;70(7):4253–60. Epub 1996/07/01. 8676446; PubMed Central PMCID: PMC190356.

31. Hung SL, Peng C, Kostavasili I, Friedman HM, Lambris JD, Eisenberg RJ, et al. The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the alternative complement pathway. Virology. 1994;203(2):299–312. Epub 1994/09/01. doi: 10.1006/viro.1994.1488 8053154.

32. Fries LF, Friedman HM, Cohen GH, Eisenberg RJ, Hammer CH, Frank MM. Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol. 1986;137(5):1636–41. Epub 1986/09/01. 3018078.

33. Lubinski J, Nagashunmugam T, Friedman HM. Viral interference with antibody and complement. Semin Cell Dev Biol. 1998;9(3):329–37. Epub 1998/07/17. doi: 10.1006/scdb.1998.0242 9665870.

34. Hart ML, Saifuddin M, Spear GT. Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralization by mannose-binding lectin. J Gen Virol. 2003;84(Pt 2):353–60. Epub 2003/02/01. doi: 10.1099/vir.0.18734-0 12560567.

35. Thielens NM, Tacnet-Delorme P, Arlaud GJ. Interaction of C1q and mannan-binding lectin with viruses. Immunobiology. 2002;205(4–5):563–74. Epub 2002/10/25. doi: 10.1078/0171-2985-00155 12396016.

36. Matsushita M, Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. The Journal of experimental medicine. 1992;176(6):1497–502. Epub 1992/12/01. doi: 10.1084/jem.176.6.1497 1460414; PubMed Central PMCID: PMC2119445.

37. Matsushita M, Endo Y, Fujita T. Cutting edge: complement-activating complex of ficolin and mannose-binding lectin-associated serine protease. J Immunol. 2000;164(5):2281–4. Epub 2000/02/29. doi: 10.4049/jimmunol.164.5.2281 10679061.

38. Ma YJ, Skjoedt MO, Garred P. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway—the fifth lectin pathway initiation complex. Journal of innate immunity. 2013;5(3):242–50. Epub 2012/12/12. doi: 10.1159/000345356 23220946.

39. Wakimoto H, Ikeda K, Abe T, Ichikawa T, Hochberg FH, Ezekowitz RA, et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther. 2002;5(3):275–82. Epub 2002/02/28. doi: 10.1006/mthe.2002.0547 11863417.

40. Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386(6624):506–10. Epub 1997/04/03. doi: 10.1038/386506a0 9087411.

41. Stengaard-Pedersen K, Thiel S, Gadjeva M, Moller-Kristensen M, Sorensen R, Jensen LT, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349(6):554–60. doi: 10.1056/NEJMoa022836 12904520.

42. Thiel S, Steffensen R, Christensen IJ, Ip WK, Lau YL, Reason IJ, et al. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms. Genes Immun. 2007;8(2):154–63. Epub 2007/01/26. doi: 10.1038/sj.gene.6364373 17252003.

43. Cedzynski M, Szemraj J, Swierzko AS, Bak-Romaniszyn L, Banasik M, Zeman K, et al. Mannan-binding lectin insufficiency in children with recurrent infections of the respiratory system. Clin Exp Immunol. 2004;136(2):304–11. Epub 2004/04/17. doi: 10.1111/j.1365-2249.2004.02453.x 15086395; PubMed Central PMCID: PMC1809017.

44. Garcia-Laorden MI, Garcia-Saavedra A, de Castro FR, Violan JS, Rajas O, Blanquer J, et al. Low clinical penetrance of mannose-binding lectin-associated serine protease 2 deficiency. J Allergy Clin Immunol. 2006;118(6):1383–6. Epub 2006/12/02. doi: 10.1016/j.jaci.2006.08.004 17137870.

45. Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F, Aspa J, Briones ML, Garcia-Saavedra A, et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol. 2008;122(2):368–74, 74 e1-2. Epub 2008/06/28. doi: 10.1016/j.jaci.2008.05.037 18582923.

46. Olszowski T, Poziomkowska-Gesicka I, Jensenius JC, Adler G. Lectin pathway of complement activation in a Polish woman with MASP-2 deficiency. Immunobiology. 2014;219(4):261–2. Epub 2013/12/18. doi: 10.1016/j.imbio.2013.10.009 24332888.

47. Sokolowska A, Szala A, St Swierzko A, Kozinska M, Niemiec T, Blachnio M, et al. Mannan-binding lectin-associated serine protease-2 (MASP-2) deficiency in two patients with pulmonary tuberculosis and one healthy control. Cell Mol Immunol. 2015;12(1):119–21. Epub 2014/03/25. doi: 10.1038/cmi.2014.19 24658431; PubMed Central PMCID: PMC4654364.

48. Thiel S, Frederiksen PD, Jensenius JC. Clinical manifestations of mannan-binding lectin deficiency. Mol Immunol. 2006;43(1–2):86–96. doi: 10.1016/j.molimm.2005.06.018 16023210.

49. Inaba S, Okochi K, Yae Y, Niklasson F, de Verder CH. Serological studies of an SLE-associated antigen-antibody system discovered as a precipitation reaction in agarose gel: the HAKATA antigen-antibody system. Fukuoka Igaku Zasshi. 1990;81(9):284–91. Epub 1990/09/01. 2276712.

50. Atkinson AP, Cedzynski M, Szemraj J, St Swierzko A, Bak-Romaniszyn L, Banasik M, et al. L-ficolin in children with recurrent respiratory infections. Clin Exp Immunol. 2004;138(3):517–20. Epub 2004/11/17. doi: 10.1111/j.1365-2249.2004.02634.x 15544630; PubMed Central PMCID: PMC1809226.

51. Cedzynski M, Atkinson AP, St Swierzko A, MacDonald SL, Szala A, Zeman K, et al. L-ficolin (ficolin-2) insufficiency is associated with combined allergic and infectious respiratory disease in children. Mol Immunol. 2009;47(2–3):415–9. Epub 2009/09/22. doi: 10.1016/j.molimm.2009.08.028 19767106.

52. Genster N, Takahashi M, Sekine H, Endo Y, Garred P, Fujita T. Lessons learned from mice deficient in lectin complement pathway molecules. Molecular immunology. 2014;61(2):59–68. Epub 2014/07/26. doi: 10.1016/j.molimm.2014.07.007 25060538.

53. Avirutnan P, Hauhart RE, Marovich MA, Garred P, Atkinson JP, Diamond MS. Complement-mediated neutralization of dengue virus requires mannose-binding lectin. MBio. 2011;2(6). Epub 2011/12/15. doi: 10.1128/mBio.00276-11 22167226; PubMed Central PMCID: PMC3236064.

54. Singh SS, Cheung RC, Wong JH, Ng TB. Mannose Binding Lectin: A Potential Biomarker for Many Human Diseases. Curr Med Chem. 2016;23(33):3847–60. Epub 2016/08/20. doi: 10.2174/0929867323666160817162208 27538693.

55. Levi-Strauss M, Mallat M. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J Immunol. 1987;139(7):2361–6. Epub 1987/10/01. 3655365.

56. Gasque P, Fontaine M, Morgan BP. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol. 1995;154(9):4726–33. Epub 1995/05/01. 7536777.

57. Morgan BP, Gasque P. Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol. 1997;107(1):1–7. Epub 1997/01/01. doi: 10.1046/j.1365-2249.1997.d01-890.x 9010248; PubMed Central PMCID: PMC1904545.

58. Keizer MP, Kamp AM, Aarts C, Geisler J, Caron HN, van de Wetering MD, et al. The High Prevalence of Functional Complement Defects Induced by Chemotherapy. Frontiers in immunology. 2016;7:420. Epub 2016/11/02. doi: 10.3389/fimmu.2016.00420 27799929; PubMed Central PMCID: PMC5066094.

59. Drew JH, Arroyave CM. The complement system of the newborn infant. Biol Neonate. 1980;37(3–4):209–17. Epub 1980/01/01. doi: 10.1159/000241276 7362858.

60. Grumach AS, Ceccon ME, Rutz R, Fertig A, Kirschfink M. Complement profile in neonates of different gestational ages. Scand J Immunol. 2014;79(4):276–81. Epub 2014/01/28. doi: 10.1111/sji.12154 24460650.

61. Sergerie Y, Rivest S, Boivin G. Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis. 2007;196(6):853–60. Epub 2007/08/19. doi: 10.1086/520094 17703415.

62. Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mammalian genome: official journal of the International Mammalian Genome Society. 2018;29(7–8):425–45. Epub 2018/09/01. doi: 10.1007/s00335-018-9772-5 30167845; PubMed Central PMCID: PMC6132704.

63. Mansur DS, Kroon EG, Nogueira ML, Arantes RM, Rodrigues SC, Akira S, et al. Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol. 2005;166(5):1419–26. Epub 2005/04/28. doi: 10.1016/S0002-9440(10)62359-0 15855642; PubMed Central PMCID: PMC1606396.

64. Perez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity. 2010;33(3):400–11. Epub 2010/09/14. doi: 10.1016/j.immuni.2010.08.014 20832341; PubMed Central PMCID: PMC2946444.

65. Andersen LL, Mork N, Reinert LS, Kofod-Olsen E, Narita R, Jorgensen SE, et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med. 2015;212(9):1371–9. doi: 10.1084/jem.20142274 26216125; PubMed Central PMCID: PMC4548062.

66. Menasria R, Boivin N, Lebel M, Piret J, Gosselin J, Boivin G. Both TRIF and IPS-1 adaptor proteins contribute to the cerebral innate immune response against herpes simplex virus 1 infection. Journal of virology. 2013;87(13):7301–8. Epub 2013/04/19. doi: 10.1128/JVI.00591-13 23596298; PubMed Central PMCID: PMC3700287.

67. Wang JP, Bowen GN, Zhou S, Cerny A, Zacharia A, Knipe DM, et al. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. Journal of virology. 2012;86(4):2273–81. Epub 2011/12/16. doi: 10.1128/JVI.06010-11 22171256; PubMed Central PMCID: PMC3302371.

68. Abel L, Plancoulaine S, Jouanguy E, Zhang SY, Mahfoufi N, Nicolas N, et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J Pediatr. 2010;157(4):623–9, 9 e1. Epub 2010/06/18. doi: 10.1016/j.jpeds.2010.04.020 20553844.

69. Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol. 2011;1(6):487–96. Epub 2012/02/22. doi: 10.1016/j.coviro.2011.10.016 22347990; PubMed Central PMCID: PMC3280408.

70. Zhang SY, Boisson-Dupuis S, Chapgier A, Yang K, Bustamante J, Puel A, et al. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunological reviews. 2008;226:29–40. Epub 2009/01/24. doi: 10.1111/j.1600-065X.2008.00698.x 19161414.

71. Lima GK, Zolini GP, Mansur DS, Freire Lima BH, Wischhoff U, Astigarraga RG, et al. Toll-like receptor (TLR) 2 and TLR9 expressed in trigeminal ganglia are critical to viral control during herpes simplex virus 1 infection. The American journal of pathology. 2010;177(5):2433–45. Epub 2010/09/25. doi: 10.2353/ajpath.2010.100121 20864677; PubMed Central PMCID: PMC2966801.

72. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. Epub 2010/07/21. doi: 10.1101/gr.107524.110 20644199; PubMed Central PMCID: PMC2928508.

73. Romanel A, Zhang T, Elemento O, Demichelis F. EthSEQ: ethnicity annotation from whole exome sequencing data. Bioinformatics. 2017;33(15):2402–4. Epub 2017/04/04. doi: 10.1093/bioinformatics/btx165 28369222; PubMed Central PMCID: PMC5818140.

74. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. J Chem Theory Comput. 2010;6(2):459–66. Epub 2010/02/09. doi: 10.1021/ct900549r 26617301.

75. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4(3):435–47. Epub 2008/03/01. doi: 10.1021/ct700301q 26620784.

76. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102(18):3586–616. Epub 1998/04/30. doi: 10.1021/jp973084f 24889800.

77. Dunbrack RL Jr. Rotamer libraries in the 21st century. Curr Opin Struct Biol. 2002;12(4):431–40. Epub 2002/08/07. doi: 10.1016/s0959-440x(02)00344-5 12163064.

78. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006;Chapter 5:Unit-5 6. Epub 2008/04/23. doi: 10.1002/0471250953.bi0506s15 18428767; PubMed Central PMCID: PMC4186674.

79. Gal P, Harmat V, Kocsis A, Bian T, Barna L, Ambrus G, et al. A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations. J Biol Chem. 2005;280(39):33435–44. Epub 2005/07/26. doi: 10.1074/jbc.M506051200 16040602.

80. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. Epub 2004/07/21. doi: 10.1002/jcc.20084 15264254.

81. Roger T, Schneider A, Weier M, Sweep FC, Le Roy D, Bernhagen J, et al. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A. 2016;113(8):E997–1005. Epub 2016/02/10. doi: 10.1073/pnas.1514018113 26858459; PubMed Central PMCID: PMC4776487.

82. Boivin G, Goyette N, Sergerie Y, Keays S, Booth T. Longitudinal evaluation of herpes simplex virus DNA load during episodes of herpes labialis. J Clin Virol. 2006;37(4):248–51. Epub 2006/10/19. doi: 10.1016/j.jcv.2006.09.006 17046320.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#