#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Novel cholinesterase paralogs of Schistosoma mansoni have perceived roles in cholinergic signaling and drug detoxification and are essential for parasite survival


Autoři: Bemnet A. Tedla aff001;  Javier Sotillo aff001;  Darren Pickering aff001;  Ramon M. Eichenberger aff001;  Stephanie Ryan aff001;  Luke Becker aff001;  Alex Loukas aff001;  Mark S. Pearson aff001
Působiště autorů: Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia aff001;  Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain aff002;  Institute of Parasitology, University of Zurich, Zurich, Switzerland aff003
Vyšlo v časopise: Novel cholinesterase paralogs of Schistosoma mansoni have perceived roles in cholinergic signaling and drug detoxification and are essential for parasite survival. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008213
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008213

Souhrn

Cholinesterase (ChE) function in schistosomes is essential for orchestration of parasite neurotransmission but has been poorly defined with respect to the molecules responsible. Interrogation of the S. mansoni genome has revealed the presence of three ChE domain-containing genes (Smche)s, which we have shown to encode two functional acetylcholinesterases (AChE)s (Smache1 –smp_154600 and Smache2 –smp_136690) and a butyrylcholinesterase (BChE) (Smbche1 –smp_125350). Antibodies to recombinant forms of each SmChE localized the proteins to the tegument of adults and schistosomula and developmental expression profiling differed among the three molecules, suggestive of functions extending beyond traditional cholinergic signaling. For the first time in schistosomes, we identified ChE enzymatic activity in fluke excretory/secretory (ES) products and, using proteomic approaches, attributed this activity to the presence of SmAChE1 and SmBChE1. Parasite survival in vitro and in vivo was significantly impaired by silencing of each smche, either individually or in combination, attesting to the essential roles of these molecules. Lastly, in the first characterization study of a BChE from helminths, evidence is provided that SmBChE1 may act as a bio-scavenger of AChE inhibitors as the addition of recombinant SmBChE1 to parasite cultures mitigated the effect of the anti-schistosome AChE inhibitor 2,2- dichlorovinyl dimethyl phosphate—dichlorvos (DDVP), whereas smbche1-silenced parasites displayed increased sensitivity to DDVP.

Klíčová slova:

Glucose – Cholinergics – Parasitic diseases – Sequence alignment – Schistosoma – Schistosoma mansoni – Small interfering RNAs – Schistosoma haematobium


Zdroje

1. Girard E, Bernard V, Minic J, Chatonnet A, Krejci E, Molgó J. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sciences. 2007;80(24):2380–5. doi: https://doi.org/10.1016/j.lfs.2007.03.011

2. Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Progress in neurobiology. 1993;41(1):31–91. Epub 1993/07/01. doi: 10.1016/0301-0082(93)90040-y 8321908

3. Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther. 2015;148:34–46. Epub 2014/12/03. doi: 10.1016/j.pharmthera.2014.11.011 25448037

4. Silman I, Sussman JL. Acetylcholinesterase: 'classical' and 'non-classical' functions and pharmacology. Curr Opin Pharmacol. 2005;5(3):293–302. Epub 2005/05/24. doi: 10.1016/j.coph.2005.01.014 15907917

5. Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor. Nature reviews: Neuroscience. 2001;2(4):294–302. Epub 2001/04/03. doi: 10.1038/35067589 11283752

6. Kimber MJ, Fleming CC. Neuromuscular function in plant parasitic nematodes: a target for novel control strategies? Parasitology. 2005;131(S1):S129–S42. doi: 10.1017/S0031182005009157 16569286

7. McVeigh P, Kimber MJ, Novozhilova E, Day TA. Neuropeptide signalling systems in flatworms. Parasitology. 2005;131(S1):S41–S55. doi: 10.1017/S0031182005008851 16569292

8. Ribeiro P, El-Shehabi F, Patocka N. Classical transmitters and their receptors in flatworms. Parasitology. 2005;131 Suppl:S19–40. Epub 2006/03/30. doi: 10.1017/S0031182005008565 16569290

9. Sangster NC, Song J, Demeler J. Resistance as a tool for discovering and understanding targets in parasite neuromusculature. Parasitology. 2005;131(S1):S179–S90. doi: 10.1017/S0031182005008656 16569289

10. Vermeire JJ, Humphries JE, Yoshino TP. Signal transduction in larval trematodes: putative systems associated with regulating larval motility and behaviour. Parasitology. 2005;131(S1):S57–S70. doi: 10.1017/S0031182005008358 16569293

11. Halton DW, Gustafsson MKS. Functional morphology of the platyhelminth nervous system. Parasitology. 1996;113(SupplementS1):S47–S72. doi: 10.1017/S0031182000077891

12. Ribeiro P, Geary T. Neuronal signaling in schistosomes: Current status and prospects for post-genomics. Canadian Journal of Zoology/Revue Canadienne de Zoologie. 2010;88 1–22.

13. Arnon R, Silman I, Tarrab-Hazdai R. Acetylcholinesterase of Schistosoma mansoni—Functional correlates—Contributed in honor of Professor Hans Neurath's 90th birthday. Protein Science. 1999;8(12):2553–61. PubMed PMID: WOS:000084314100001. doi: 10.1110/ps.8.12.2553 10631970

14. Bentley GN, Jones AK, Agnew A. Mapping and sequencing of acetylcholinesterase genes from the platyhelminth blood fluke Schistosoma. Gene. 2003;314:103–12. doi: 10.1016/s0378-1119(03)00709-1 PubMed PMID: WOS:000186113200010. 14527722

15. Bentley GN, Jones AK, Agnew A. Expression and comparative functional characterisation of recombinant acetyl cholinesterase from three species of Schistosoma. Molecular and Biochemical Parasitology. 2005;141(1):119–23. doi: 10.1016/j.molbiopara.2005.01.019 PubMed PMID: WOS:000228680600013. 15811534

16. Kellershohn J, Thomas L, Hahnel SR, Grunweller A, Hartmann RK, Hardt M, et al. Insects in anthelminthics research: Lady beetle-derived harmonine affects survival, reproduction and stem cell proliferation of Schistosoma mansoni. PLoS Negl Trop Dis. 2019;13(3):e0007240. doi: 10.1371/journal.pntd.0007240 30870428; PubMed Central PMCID: PMC6436750.

17. You H, Gobert GN, Du X, Pali G, Cai P, Jones MK, et al. Functional characterisation of Schistosoma japonicum acetylcholinesterase. Parasites & Vectors. 2016;9:328. doi: 10.1186/s13071-016-1615-1 PubMed PMID: PMC4901427. 27283196

18. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460(7253):352–8. http://www.nature.com/nature/journal/v460/n7253/suppinfo/nature08160_S1.html doi: 10.1038/nature08160 19606141

19. Paraoanu LE, Layer PG. Acetylcholinesterase in cell adhesion, neurite growth and network formation. Febs j. 2008;275(4):618–24. Epub 2008/01/22. doi: 10.1111/j.1742-4658.2007.06237.x 18205832

20. Zhang X-J, Greenberg DS. Acetylcholinesterase involvement in apoptosis. Frontiers in Genetics. 2012;5. doi: 10.3389/fgene.2012.00005

21. Espinoza B, Tarrab-Hazdai R, Himmeloch S, Arnon R. Acetylcholinesterase from Schistosoma mansoni: immunological characterization. Immunology letters. 1991;28(2):167–74. doi: 10.1016/0165-2478(91)90116-r 1885212

22. Jones AK, Bentley GN, Parra WGO, Agnew A. Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma. FASEB Journal. 2002;16(1):441-. doi: 10.1096/fj.01-0683fje 11821256

23. Camacho M, Agnew A. Schistosoma: Rate of glucose import is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Experimental Parasitology. 1995;81(4):584–91. doi: 10.1006/expr.1995.1152 PubMed PMID: WOS:A1995TN32400019. 8543000

24. Sundaraneedi MK, Tedla BA, Eichenberger RM, Becker L, Pickering D, Smout MJ, et al. Polypyridylruthenium(II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS neglected tropical diseases. 2017;11(12):e0006134. Epub 2017/12/15. doi: 10.1371/journal.pntd.0006134 29240773; PubMed Central PMCID: PMC5746282.

25. You H, Liu C, Du X, Nawaratna S, Rivera V, Harvie M, et al. Suppression of Schistosoma japonicum acetylcholinesterase affects parasite growth and development. International Journal of Molecular Sciences. 2018;19(8):2426. doi: 10.3390/ijms19082426 30115897

26. Camacho M, Alsford S, Jones A, Agnew A. Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Molecular and biochemical parasitology. 1995;71(1):127–34. Epub 1995/04/01. doi: 10.1016/0166-6851(94)00039-p 7630376

27. Skelly PJ, Da'dara AA, Li X-H, Castro-Borges W, Wilson RA. Schistosome Feeding and Regurgitation. PLOS Pathogens. 2014;10(8):e1004246. doi: 10.1371/journal.ppat.1004246 25121497

28. Hussein AS, Harel M, Selkirk ME. A distinct family of acetylcholinesterases is secreted by Nippostrongylus brasiliensis. Molecular and Biochemical Parasitology. 2002;123(2):125–34. PubMed PMID: WOS:000178735800005. 12270628

29. Lawrence CE, Pritchard DI. Differential secretion of acetylcholinesterase and proteases during the development of Heligmosomoides polygyrus. Int J Parasitol. 1993;23(3):309–14. Epub 1993/05/01. doi: 10.1016/0020-7519(93)90004-i 8359979

30. Rathaur S, Robertson BD, Selkirk ME, Maizels RM. Secretory acetylcholinesterases from Brugia malayi adult and microfilarial parasites. Mol Biochem Parasitol. 1987;26(3):257–65. Epub 1987/12/01. doi: 10.1016/0166-6851(87)90078-8 3123928

31. Selkirk ME, Lazari O, Hussein AS, Matthews JB. Nematode acetylcholinesterases are encoded by multiple genes and perform non-overlapping functions. Chemico-Biological Interactions. 2005;157:263–8. doi: 10.1016/j.cbi.2005.10.039 PubMed PMID: WOS:000234337000036. 16243303

32. Vaux R, Schnoeller C, Berkachy R, Roberts LB, Hagen J, Gounaris K, et al. Modulation of the Immune Response by Nematode Secreted Acetylcholinesterase Revealed by Heterologous Expression in Trypanosoma musculi. PLoS Pathog. 2016;12(11):e1005998. Epub 2016/11/02. doi: 10.1371/journal.ppat.1005998 27802350; PubMed Central PMCID: PMC5089771.

33. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact. 2010;187(1–3):10–22. Epub 2010/02/09. doi: 10.1016/j.cbi.2010.01.042 20138030; PubMed Central PMCID: PMC2894301.

34. Bueding E. Acetylcholinesterase activity of Schistosoma mansoni. British journal of pharmacology and chemotherapy. 1952;7(4):563–6. doi: 10.1111/j.1476-5381.1952.tb00722.x 13019023

35. Basch PF. Why do schistosomes have separate sexes? Parasitol Today. 1990;6(5):160–3. Epub 1990/05/01. doi: 10.1016/0169-4758(90)90339-6 15463329

36. Mack A, Robitzki A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study. Prog Neurobiol. 2000;60(6):607–28. Epub 2000/03/30. doi: 10.1016/s0301-0082(99)00047-7 10739090

37. Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene Expression Patterns in Larval Schistosoma mansoni Associated with Infection of the Mammalian Host. PLOS Neglected Tropical Diseases. 2011;5(8):e1274. doi: 10.1371/journal.pntd.0001274 21912711

38. Gobert GN, Chai M, McManus DP. Biology of the schistosome lung-stage schistosomulum. Parasitology. 2007;134(Pt 4):453–60. doi: 10.1017/S0031182006001648 PubMed PMID: PMC2754249. 17109780

39. Arnon R, Espinoza-Ortega B, Tarrab-Hazdai R. Acetylcholinesterase of Schistosoma mansoni: an antigen of functional implications. Memórias do Instituto Oswaldo Cruz. 1987;82:163–70. doi: 10.1590/s0074-02761987000800028 3509181

40. Camacho M, Tarrab-Hazdai R, Espinoza B, Arnon R, Agnew A. The amount of acetylcholinesterase on the parasite surface reflects the differential sensitivity of schistosome species to metrifonate. Parasitology. 1994;108 (Pt 2):153–60. Epub 1994/02/01. doi: 10.1017/s0031182000068244 8159460

41. Lee DL. The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the 'excretory glands'. Tissue & cell. 1970;2(2):225–31. Epub 1970/01/01. doi: 10.1016/s0040-8166(70)80017-9 18631510

42. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002;110(4):627–39. Epub 2002/04/06. doi: 10.1016/s0306-4522(01)00613-3 11934471

43. Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, et al. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. Journal of neurochemistry. 2000;75(3):1320–31. Epub 2000/08/11. doi: 10.1046/j.1471-4159.2000.751320.x 10936216

44. Greenspan RJ, Finn JA Jr., Hall JC. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. The Journal of comparative neurology. 1980;189(4):741–74. Epub 1980/02/15. doi: 10.1002/cne.901890409 6769980

45. Xie W, Stribley JA, Chatonnet A, Wilder PJ, Rizzino A, McComb RD, et al. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. The Journal of pharmacology and experimental therapeutics. 2000;293(3):896–902. Epub 2000/06/28. 10869390

46. Smith H, Doenhoff M, Aitken C, Bailey W, Ji M, Dawson E, et al. Comparison of Schistosoma mansoni soluble cercarial antigens and soluble egg antigens for serodiagnosing schistosome infections. PLOS Neglected Tropical Diseases. 2012;6(9):e1815. doi: 10.1371/journal.pntd.0001815 23029577

47. Hui XM, Yang LW, He GL, Yang QP, Han ZJ, Li F. RNA interference of ace1 and ace2 in Chilo suppressalis reveals their different contributions to motor ability and larval growth. Insect Molecular Biology. 2011;20(4):507–18. doi: 10.1111/j.1365-2583.2011.01081.x 21518395

48. Lu Y, Park Y, Gao X, Zhang X, Yao J, Pang Y-P, et al. Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Scientific Reports. 2012;2:288. doi: 10.1038/srep00288 PubMed PMID: PMC3286809. 22371826

49. Hussein AS, Kichenin K, Selkirk ME. Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Molecular and Biochemical Parasitology. 2002;122(1):91–4. doi: 10.1016/s0166-6851(02)00068-3 PubMed PMID: WOS:000177290900009. 12076773

50. Johnson CD, Rand JB, Herman RK, Stern BD, Russell RL. The acetylcholinesterase genes of C. elegans: Identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype. Neuron. 1988;1(2):165–73. doi: 10.1016/0896-6273(88)90201-2 3272166

51. Lang GJ, Zhu KY, Zhang CX. Can acetylcholinesterase serve as a target for developing more selective insecticides? Current drug targets. 2012;13(4):495–501. Epub 2012/01/28. doi: 10.2174/138945012799499712 22280346

52. Bueding E, Liu CL, Rogers SH. Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. British journal of pharmacology. 1972;46(3):480–7. doi: 10.1111/j.1476-5381.1972.tb08145.x 4656609

53. Davis A, Bailey DR. Metrifonate in urinary schistosomiasis. Bulletin of the World Health Organization. 1969;41(2):209–24. Epub 1969/01/01. 5308698; PubMed Central PMCID: PMC2427421.

54. Feldmeier H, Doehring E, Daffala AA, Omer AH, Dietrich M. Efficacy of metrifonate in urinary schistosomiasis: comparison of reduction of Schistosoma haematobium and Schistosoma mansoni eggs. The American journal of tropical medicine and hygiene. 1982;31(6):1188–94. Epub 1982/11/01. doi: 10.4269/ajtmh.1982.31.1188 6890775

55. Sundaraneedi M, Eichenberger RM, Al-Hallaf R, Yang D, Sotillo J, Rajan S, et al. Polypyridylruthenium(II) complexes exert in vitro and in vivo nematocidal activity and show significant inhibition of parasite acetylcholinesterases. International Journal for Parasitology: Drugs and Drug Resistance. 2018;8(1):1–7. Epub 2017/12/06. doi: 10.1016/j.ijpddr.2017.11.005 29207309; PubMed Central PMCID: PMC5724747.

56. Pritchard DI. Why do some parasitic nematodes secrete acetylcholinesterase (AChE)? International journal for parasitology. 1993;23(5):549–50. Epub 1993/08/01. doi: 10.1016/0020-7519(93)90157-t 8225755

57. Felder CE, Botti SA, Lifson S, Silman I, Sussman JL. External and internal electrostatic potentials of cholinesterase models. J Mol Graph Model. 1997;15(5):318–27, 35–7. Epub 1998/06/26. doi: 10.1016/s1093-3263(98)00005-9 9640563

58. Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor. Nature Reviews Neuroscience. 2001;2:294. doi: 10.1038/35067589 11283752

59. Ittiprasert W, Mann VH, Karinshak SE, Coghlan A, Rinaldi G, Sankaranarayanan G, et al. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. bioRxiv. 2018:358424. doi: 10.1101/358424

60. McGehee DS, Krasowski MD, Fung DL, Wilson B, Gronert GA, Moss J. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology. 2000;93(2):510–9. doi: 10.1097/00000542-200008000-00031 10910502

61. Perrett S, Whitfield PJ. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. 1995;61(3):276–8. doi: 10.1055/s-2006-958073 7617774

62. Saxena A, Sun W, Luo C, Myers TM, Koplovitz I, Lenz DE, et al. Bioscavenger for protection from toxicity of organophosphorus compounds. J Mol Neurosci. 2006;30(1–2):145–8. Epub 2006/12/29. doi: 10.1385/jmn:30:1:145 17192662

63. Boudinot E, Taysse L, Daulon S, Chatonnet A, Champagnat J, Foutz AS. Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase. Pharmacology biochemistry and behavior. 2005;80(1):53–61. Epub 2005/01/18. doi: 10.1016/j.pbb.2004.10.014 15652380

64. De Vriese C, Gregoire F, Lema-Kisoka R, Waelbroeck M, Robberecht P, Delporte C. Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites. Endocrinology. 2004;145(11):4997–5005. Epub 2004/07/17. doi: 10.1210/en.2004-0569 15256494

65. Adzhubei AA, Sternberg MJ, Makarov AA. Polyproline-II helix in proteins: structure and function. J Mol Biol. 2013;425(12):2100–32. Epub 2013/03/20. doi: 10.1016/j.jmb.2013.03.018 23507311

66. Ramalho-Pinto FJ, Gazzinelli G, Howells RE, Mota-Santos TA, Figueiredo EA, Pellegrino J. Schistosoma mansoni: defined system for stepwise transformation of cercaria to schistosomule in vitro. Experimental parasitology. 1974;36(3):360–72. Epub 1974/12/01. doi: 10.1016/0014-4894(74)90076-9 4139038

67. Lewis FA, Stirewalt MA, Souza CP, Gazzinelli G. Large-scale laboratory maintenance of Schistosoma mansoni, with observations on three schistosome/snail host combinations. The Journal of parasitology. 1986;72(6):813–29. Epub 1986/12/01. 3546654

68. Basch PF. Cultivation of Schistosoma mansoni In vitro. I. Establishment of cultures from cercariae and development until pairing. The Journal of parasitology. 1981;67(2):179–85. Epub 1981/04/01. 7241277

69. Sotillo J, Pearson M, Becker L, Mulvenna J, Loukas A. A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. International journal for parasitology. 2015;45(8):505–16. doi: 10.1016/j.ijpara.2015.03.004 25910674

70. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4. Epub 2016/03/24. doi: 10.1093/molbev/msw054 27004904

71. Long T, Neitz RJ, Beasley R, Kalyanaraman C, Suzuki BM, Jacobson MP, et al. Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni. PLOS Neglected Tropical Diseases. 2016;10(1):e0004356. doi: 10.1371/journal.pntd.0004356 26751972

72. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8. Epub 2008/06/13. doi: 10.1038/nprot.2008.73 18546601

73. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 1961;7(2):88–95. doi: https://doi.org/10.1016/0006-2952(61)90145-9

74. Hodgson AJ, Chubb IW. A method for the detection and quantitation of secretory acetylcholinesterase. Neurochemical Pathology. 1983;1(3):211. doi: 10.1007/bf02834246

75. Tran MH, Pearson MS, Bethony JM. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nature Medicine 2006;12(7):835. doi: 10.1038/nm1430 16783371

76. Wangchuk P, Giacomin PR, Pearson MS, Smout MJ, Loukas A. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms. Scientific Reports. 2016;6:32101. doi: 10.1038/srep32101 27572696

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#