#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cross-talk between microglia and neurons regulates HIV latency


Autoři: David Alvarez-Carbonell aff001;  Fengchun Ye aff001;  Nirmala Ramanath aff001;  Yoelvis Garcia-Mesa aff001;  Pamela E. Knapp aff002;  Kurt F. Hauser aff002;  Jonathan Karn aff001
Působiště autorů: Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America aff001;  Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America aff002
Vyšlo v časopise: Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008249
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008249

Souhrn

Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort) and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged neurons induce HIV expression in latently infected microglial cells. After 48–72 h co-culture, low levels of HIV expression appear to damage neurons, which further enhances HIV expression. There was a marked reduction in intact dendrites staining for microtubule associated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicating extensive dendritic pruning. To model neurotoxicity induced by methamphetamine (METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected patients. This combination of agents potently induced HIV expression, with the METH effect mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the combination of METH and poly(I:C) induced HIV expression and dendritic damage beyond levels seen using either agent alone, Thus, our results demonstrate that the cross-talk between healthy neurons and microglia modulates HIV expression, while HIV expression impairs this intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of microglia-mediated neurotoxicity.

Klíčová slova:

Flow cytometry – HIV infections – Microglial cells – Motor neurons – Neuronal dendrites – Neuronal differentiation – Neurons


Zdroje

1. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, et al. HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol. 2002;8(2):136–42. Epub 2002/04/06. doi: 10.1080/13550280290049615 11935465.

2. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, Grant I, et al. Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology. 2002;59(10):1563–7. Epub 2002/11/27. doi: 10.1212/01.wnl.0000034175.11956.79 12451198.

3. Heaton RK, Clifford DB, Franklin DR Jr., Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96. Epub 2010/12/08. 75/23/2087 [pii] doi: 10.1212/WNL.0b013e318200d727 21135382; PubMed Central PMCID: PMC2995535.

4. Portilla I, Reus S, Leon R, van-der Hofstadt C, Sanchez J, Lopez N, et al. Neurocognitive Impairment in Well-Controlled HIV-Infected Patients: A Cross-Sectional Study. AIDS research and human retroviruses. 2019. Epub 2019/03/19. doi: 10.1089/aid.2018.0279 30880401.

5. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, et al. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology. 2016;86(4):334–40. Epub 2016/01/01. doi: 10.1212/WNL.0000000000002277 26718568; PubMed Central PMCID: PMC4776086.

6. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99. Epub 2007/10/05. doi: 10.1212/01.WNL.0000287431.88658.8b 17914061.

7. Cohen RA, Seider TR, Navia B. HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? Alzheimers Res Ther. 2015;7(1):37. Epub 2015/04/08. doi: 10.1186/s13195-015-0123-4 25848401; PubMed Central PMCID: PMC4386102.

8. Reiner BC, Keblesh JP, Xiong H. Methamphetamine abuse, HIV infection, and neurotoxicity. International journal of physiology, pathophysiology and pharmacology. 2009;1(2):162–79. Epub 2010/04/23. 20411028; PubMed Central PMCID: PMC2856939.

9. Chang L, Ernst T, Speck O, Grob CS. Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. The American journal of psychiatry. 2005;162(2):361–9. Epub 2005/01/29. doi: 10.1176/appi.ajp.162.2.361 15677602; PubMed Central PMCID: PMC4899042.

10. Langford D, Adame A, Grigorian A, Grant I, McCutchan JA, Ellis RJ, et al. Patterns of selective neuronal damage in methamphetamine-user AIDS patients. Journal of acquired immune deficiency syndromes (1999). 2003;34(5):467–74. Epub 2003/12/06. doi: 10.1097/00126334-200312150-00004 14657756.

11. Gavrilin MA, Mathes LE, Podell M. Methamphetamine enhances cell-associated feline immunodeficiency virus replication in astrocytes. Journal of neurovirology. 2002;8(3):240–9. Epub 2002/06/08. doi: 10.1080/13550280290049660 12053278.

12. Toussi SS, Joseph A, Zheng JH, Dutta M, Santambrogio L, Goldstein H. Short communication: Methamphetamine treatment increases in vitro and in vivo HIV replication. AIDS research and human retroviruses. 2009;25(11):1117–21. Epub 2009/11/10. doi: 10.1089/aid.2008.0282 19895343; PubMed Central PMCID: PMC2828189.

13. Wires ES, Alvarez D, Dobrowolski C, Wang Y, Morales M, Karn J, et al. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells. Journal of neurovirology. 2012;18(5):400–10. Epub 2012/05/24. doi: 10.1007/s13365-012-0103-4 22618514; PubMed Central PMCID: PMC3469781.

14. Xu E, Liu J, Liu H, Wang X, Xiong H. Role of microglia in methamphetamine-induced neurotoxicity. International journal of physiology, pathophysiology and pharmacology. 2017;9(3):84–100. Epub 2017/07/12. 28694920; PubMed Central PMCID: PMC5498881.

15. Cole JH, Underwood J, Caan MW, De Francesco D, van Zoest RA, Leech R, et al. Increased brain-predicted aging in treated HIV disease. Neurology. 2017;88(14):1349–57. Epub 2017/03/05. doi: 10.1212/WNL.0000000000003790 28258081; PubMed Central PMCID: PMC5379929.

16. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(18):7089–93. Epub 1986/09/01. doi: 10.1073/pnas.83.18.7089 3018755; PubMed Central PMCID: PMC386658.

17. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Annals of neurology. 1996;39(6):705–11. Epub 1996/06/01. doi: 10.1002/ana.410390606 8651642.

18. Fischer-Smith T, Croul S, Adeniyi A, Rybicka K, Morgello S, Khalili K, et al. Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. The American journal of pathology. 2004;164(6):2089–99. Epub 2004/05/27. doi: 10.1016/S0002-9440(10)63767-4 15161643; PubMed Central PMCID: PMC1615769.

19. Cosenza MA, Zhao ML, Si Q, Lee SC. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain pathology (Zurich, Switzerland). 2002;12(4):442–55. Epub 2002/11/01. doi: 10.1111/j.1750-3639.2002.tb00461.x 12408230.

20. Wiley CA. Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain pathology (Zurich, Switzerland). 2003;13(3):415; author reply -6. Epub 2003/08/30. 12946030.

21. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Annals of neurology. 2009;66(2):253–8. Epub 2009/09/11. doi: 10.1002/ana.21697 19743454.

22. Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, et al. CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. Journal of virology. 2004;78(8):4120–33. Epub 2004/03/30. doi: 10.1128/JVI.78.8.4120-4133.2004 15047828; PubMed Central PMCID: PMC374297.

23. Spudich SS, Ances BM. CROI 2017: Neurologic Complications of HIV Infection. Topics in antiviral medicine. 2017;25(2):69–76. Epub 2017/06/10. 28598791; PubMed Central PMCID: PMC5677044.

24. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS pathogens. 2015;11(3):e1004720. Epub 2015/03/27. doi: 10.1371/journal.ppat.1004720 25811757; PubMed Central PMCID: PMC4374811.

25. Subra C, Trautmann L. Role of T Lymphocytes in HIV Neuropathogenesis. Current HIV/AIDS reports. 2019. Epub 2019/05/08. doi: 10.1007/s11904-019-00445-6 31062168.

26. Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, et al. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material. Cell reports. 2017;18(6):1473–83. Epub 2017/02/09. doi: 10.1016/j.celrep.2017.01.027 28178524; PubMed Central PMCID: PMC5316642.

27. Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q, et al. Macrophages but not Astrocytes Harbor HIV DNA in the Brains of HIV-1-Infected Aviremic Individuals on Suppressive Antiretroviral Therapy. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology. 2019;14(1):110–9. Epub 2018/09/09. doi: 10.1007/s11481-018-9809-2 30194646; PubMed Central PMCID: PMC6391194.

28. Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011;7(10):e1002286. Epub 2011/10/19. doi: 10.1371/journal.ppat.1002286 22007152; PubMed Central PMCID: PMC3188520.

29. Rossi F, Querido B, Nimmagadda M, Cocklin S, Navas-Martin S, Martin-Garcia J. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors. Retrovirology. 2008;5:89. Epub 2008/10/08. doi: 10.1186/1742-4690-5-89 18837996; PubMed Central PMCID: PMC2576352.

30. Peters PJ, Bhattacharya J, Hibbitts S, Dittmar MT, Simmons G, Bell J, et al. Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. Journal of virology. 2004;78(13):6915–26. Epub 2004/06/15. doi: 10.1128/JVI.78.13.6915-6926.2004 15194768; PubMed Central PMCID: PMC421670.

31. Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, et al. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. Journal of virology. 2002;76(12):6277–92. Epub 2002/05/22. doi: 10.1128/JVI.76.12.6277-6292.2002 12021361; PubMed Central PMCID: PMC136234.

32. Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS pathogens. 2009;5(4):e1000395. Epub 2009/04/25. doi: 10.1371/journal.ppat.1000395 19390619; PubMed Central PMCID: PMC2668697.

33. Zhang YL, Ouyang YB, Liu LG, Chen DX. Blood-brain barrier and neuro-AIDS. European review for medical and pharmacological sciences. 2015;19(24):4927–39. Epub 2016/01/09. 26744885.

34. Rao KS, Ghorpade A, Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert opinion on drug delivery. 2009;6(8):771–84. Epub 2009/07/02. doi: 10.1517/17425240903081705 19566446; PubMed Central PMCID: PMC2754315.

35. Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annual review of neuroscience. 2002;25:537–62. Epub 2002/06/08. doi: 10.1146/annurev.neuro.25.112701.142822 12052920.

36. Garcia-Mesa Y, Jay TR, Checkley MA, Luttge B, Dobrowolski C, Valadkhan S, et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol. 2017;23(1):47–66. Epub 2016/11/23. doi: 10.1007/s13365-016-0499-3 27873219; PubMed Central PMCID: PMC5329090.

37. Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, et al. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology. 2017;14(1):9. Epub 2017/02/09. doi: 10.1186/s12977-017-0335-8 28166799; PubMed Central PMCID: PMC5294768.

38. Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM. HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol. 2018;24(2):192–203. Epub 2017/12/20. doi: 10.1007/s13365-017-0604-2 29256041; PubMed Central PMCID: PMC5910454.

39. Alvarez-Carbonell D, Ye F, Ramanath N, Dobrowolski C, Karn J. The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells. J Neuroimmune Pharmacol. 2018. Epub 2018/07/11. doi: 10.1007/s11481-018-9798-1 29987742.

40. Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN, et al. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir. MBio. 2017;8(4). Epub 2017/08/16. doi: 10.1128/mBio.01186-17 28811349; PubMed Central PMCID: PMC5559639.

41. Veenhuis RT, Clements JE, Gama L. HIV Eradication Strategies: Implications for the Central Nervous System. Curr HIV/AIDS Rep. 2019;16(1):96–104. Epub 2019/02/09. doi: 10.1007/s11904-019-00428-7 30734905.

42. Al-Harti L, Joseph J, Nath A. Astrocytes as an HIV CNS reservoir: highlights and reflections of an NIMH-sponsored symposium. J Neurovirol. 2018;24(6):665–9. Epub 2018/11/07. doi: 10.1007/s13365-018-0691-8 30397827; PubMed Central PMCID: PMC6279544.

43. Li GH, Henderson L, Nath A. Astrocytes as an HIV Reservoir: Mechanism of HIV Infection. Curr HIV Res. 2016;14(5):373–81. Epub 2016/10/11. doi: 10.2174/1570162x14666161006121455 27719663.

44. Churchill MJ, Cowley DJ, Wesselingh SL, Gorry PR, Gray LR. HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research. J Neurovirol. 2015;21(3):290–300. Epub 2014/07/26. doi: 10.1007/s13365-014-0271-5 25060300; PubMed Central PMCID: PMC4305497.

45. Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain: a journal of neurology. 2009;132(Pt 2):288–95. Epub 2008/06/24. doi: 10.1093/brain/awn109 18567623; PubMed Central PMCID: PMC2640215.

46. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8. Epub 2005/04/16. doi: 10.1126/science.1110647 15831717.

47. Giulian D, Vaca K, Corpuz M. Brain glia release factors with opposing actions upon neuronal survival. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1993;13(1):29–37. Epub 1993/01/01. doi: 10.1523/JNEUROSCI.13-01-00029.1993 8423475.

48. Giulian D, Haverkamp LJ, Li J, Karshin WL, Yu J, Tom D, et al. Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochemistry international. 1995;27(1):119–37. Epub 1995/07/01. doi: 10.1016/0197-0186(95)00067-i 7655344.

49. van Rossum D, Hanisch UK. Microglia. Metabolic brain disease. 2004;19(3–4):393–411. Epub 2004/11/24. doi: 10.1023/b:mebr.0000043984.73063.d8 15554430.

50. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature neuroscience. 2006;9(7):917–24. Epub 2006/05/30. doi: 10.1038/nn1715 16732273.

51. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science (New York, NY). 2006;312(5778):1389–92. Epub 2006/06/03. doi: 10.1126/science.1123511 16741123.

52. Streit WJ. Microglial senescence: does the brain's immune system have an expiration date? Trends in neurosciences. 2006;29(9):506–10. Epub 2006/07/25. doi: 10.1016/j.tins.2006.07.001 16859761.

53. Neumann H, Takahashi K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. Journal of neuroimmunology. 2007;184(1–2):92–9. Epub 2007/01/24. doi: 10.1016/j.jneuroim.2006.11.032 17239445.

54. Bai L, Zhu X, Ma T, Wang J, Wang F, Zhang S. The p38 MAPK NF-kappaB pathway, not the ERK pathway, is involved in exogenous HIV-1 Tat-induced apoptotic cell death in retinal pigment epithelial cells. The international journal of biochemistry & cell biology. 2013;45(8):1794–801. Epub 2013/06/05. doi: 10.1016/j.biocel.2013.05.022 23732112.

55. Debaisieux S, Rayne F, Yezid H, Beaumelle B. The ins and outs of HIV-1 Tat. Traffic (Copenhagen, Denmark). 2012;13(3):355–63. Epub 2011/09/29. doi: 10.1111/j.1600-0854.2011.01286.x 21951552.

56. Aquaro S, Panti S, Caroleo MC, Balestra E, Cenci A, Forbici F, et al. Primary macrophages infected by human immunodeficiency virus trigger CD95-mediated apoptosis of uninfected astrocytes. Journal of leukocyte biology. 2000;68(3):429–35. Epub 2000/09/14. 10985261.

57. Wayman WN, Dodiya HB, Persons AL, Kashanchi F, Kordower JH, Hu XT, et al. Enduring cortical alterations after a single in-vivo treatment of HIV-1 Tat. Neuroreport. 2012;23(14):825–9. Epub 2012/07/26. doi: 10.1097/WNR.0b013e3283578050 22828409; PubMed Central PMCID: PMC3555038.

58. Nutile-McMenemy N, Elfenbein A, Deleo JA. Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression. Journal of neurochemistry. 2007;103(5):2035–46. Epub 2007/09/18. doi: 10.1111/j.1471-4159.2007.04889.x 17868321.

59. Lu SM, Tremblay ME, King IL, Qi J, Reynolds HM, Marker DF, et al. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PloS one. 2011;6(9):e23915. Epub 2011/09/14. doi: 10.1371/journal.pone.0023915 21912650; PubMed Central PMCID: PMC3166280.

60. Nath A, Conant K, Chen P, Scott C, Major EO. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. The Journal of biological chemistry. 1999;274(24):17098–102. Epub 1999/06/08. doi: 10.1074/jbc.274.24.17098 10358063.

61. Fan Y, He JJ. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation. The Journal of biological chemistry. 2016;291(43):22819–29. Epub 2016/09/10. doi: 10.1074/jbc.M116.731828 27609520; PubMed Central PMCID: PMC5077214.

62. Berman JW, Carvallo L, Buckner CM, Luers A, Prevedel L, Bennett MV, et al. HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS. Journal of neuroinflammation. 2016;13(1):54. Epub 2016/03/05. doi: 10.1186/s12974-016-0510-1 26934876; PubMed Central PMCID: PMC4774036.

63. Zucchini S, Pittaluga A, Brocca-Cofano E, Summa M, Fabris M, De Michele R, et al. Increased excitability in tat-transgenic mice: role of tat in HIV-related neurological disorders. Neurobiology of disease. 2013;55:110–9. Epub 2013/03/05. doi: 10.1016/j.nbd.2013.02.004 23454193.

64. Shin AH, Thayer SA. Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures. Molecular and cellular neurosciences. 2013;54:22–9. Epub 2012/12/27. doi: 10.1016/j.mcn.2012.12.005 23267846; PubMed Central PMCID: PMC3622188.

65. Midde NM, Gomez AM, Zhu J. HIV-1 Tat protein decreases dopamine transporter cell surface expression and vesicular monoamine transporter-2 function in rat striatal synaptosomes. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology. 2012;7(3):629–39. Epub 2012/05/10. doi: 10.1007/s11481-012-9369-9 22570010; PubMed Central PMCID: PMC3688268.

66. Kim HJ, Martemyanov KA, Thayer SA. Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008;28(48):12604–13. Epub 2008/11/28. doi: 10.1523/jneurosci.2958-08.2008 19036954; PubMed Central PMCID: PMC2678679.

67. Theodore S, Cass WA, Dwoskin LP, Maragos WF. HIV-1 protein Tat inhibits vesicular monoamine transporter-2 activity in rat striatum. Synapse (New York, NY). 2012;66(8):755–7. Epub 2012/04/21. doi: 10.1002/syn.21564 22517264; PubMed Central PMCID: PMC4548822.

68. El-Hage N, Podhaizer EM, Sturgill J, Hauser KF. Toll-like Receptor Expression and Activation in Astroglia: Differential Regulation by HIV-1 Tat, gp120, and Morphine. Immunol Invest. 2011;40(5):498–522. Epub 2011/03/24. doi: 10.3109/08820139.2011.561904 21425908; PubMed Central PMCID: PMC3287069.

69. Fields J, Dumaop W, Rockenstein E, Mante M, Spencer B, Grant I, et al. Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer. Journal of neurovirology. 2013;19(1):89–101. Epub 2013/01/24. doi: 10.1007/s13365-012-0145-7 23341224; PubMed Central PMCID: PMC3567331.

70. Chen L, Liu J, Xu C, Keblesh J, Zang W, Xiong H. HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PloS one. 2011;6(10):e25994. Epub 2011/10/22. doi: 10.1371/journal.pone.0025994 22016798; PubMed Central PMCID: PMC3189248.

71. Zhang J, Liu J, Katafiasz B, Fox H, Xiong H. HIV-1 gp120-induced axonal injury detected by accumulation of beta-amyloid precursor protein in adult rat corpus callosum. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology. 2011;6(4):650–7. Epub 2011/02/03. doi: 10.1007/s11481-011-9259-6 21286834; PubMed Central PMCID: PMC3165079.

72. Kogan M, Deshmane S, Sawaya BE, Gracely EJ, Khalili K, Rappaport J. Inhibition of NF-kappaB activity by HIV-1 Vpr is dependent on Vpr binding protein. Journal of cellular physiology. 2013;228(4):781–90. Epub 2012/09/25. doi: 10.1002/jcp.24226 23001849; PubMed Central PMCID: PMC3604695.

73. Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V. Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. Journal of neuroinflammation. 2012;9:138. Epub 2012/06/26. doi: 10.1186/1742-2094-9-138 22727020; PubMed Central PMCID: PMC3425332.

74. Kohleisen B, Shumay E, Sutter G, Foerster R, Brack-Werner R, Nuesse M, et al. Stable expression of HIV-1 Nef induces changes in growth properties and activation state of human astrocytes. AIDS (London, England). 1999;13(17):2331–41. Epub 1999/12/22. doi: 10.1097/00002030-199912030-00004 10597774.

75. Acheampong EA, Parveen Z, Muthoga LW, Kalayeh M, Mukhtar M, Pomerantz RJ. Human Immunodeficiency virus type 1 Nef potently induces apoptosis in primary human brain microvascular endothelial cells via the activation of caspases. Journal of virology. 2005;79(7):4257–69. Epub 2005/03/16. doi: 10.1128/JVI.79.7.4257-4269.2005 15767427; PubMed Central PMCID: PMC1061575.

76. Lamers SL, Fogel GB, Singer EJ, Salemi M, Nolan DJ, Huysentruyt LC, et al. HIV-1 Nef in macrophage-mediated disease pathogenesis. International reviews of immunology. 2012;31(6):432–50. Epub 2012/12/12. doi: 10.3109/08830185.2012.737073 23215766; PubMed Central PMCID: PMC3544535.

77. Masanetz S, Lehmann MH. HIV-1 Nef increases astrocyte sensitivity towards exogenous hydrogen peroxide. Virology journal. 2011;8:35. Epub 2011/01/25. doi: 10.1186/1743-422X-8-35 21255447; PubMed Central PMCID: PMC3038946.

78. Laforge M, Petit F, Estaquier J, Senik A. Commitment to apoptosis in CD4(+) T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef. Journal of virology. 2007;81(20):11426–40. Epub 2007/08/03. doi: 10.1128/JVI.00597-07 17670831; PubMed Central PMCID: PMC2045521.

79. Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nature reviews Immunology. 2005;5(1):69–81. Epub 2005/01/05. doi: 10.1038/nri1527 15630430.

80. Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS. Astrogliosis in CNS pathologies: is there a role for microglia? Molecular neurobiology. 2010;41(2–3):232–41. Epub 2010/02/12. doi: 10.1007/s12035-010-8098-4 20148316; PubMed Central PMCID: PMC3629545.

81. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends in immunology. 2007;28(3):138–45. Epub 2007/02/06. doi: 10.1016/j.it.2007.01.005 17276138.

82. Glass JD, Fedor H, Wesselingh SL, McArthur JC. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Annals of neurology. 1995;38(5):755–62. Epub 1995/11/01. doi: 10.1002/ana.410380510 7486867.

83. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, et al. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Annals of neurology. 1997;42(6):963–72. Epub 1997/12/24. doi: 10.1002/ana.410420618 9403489.

84. Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. Journal of neuroimmunology. 1997;74(1–2):1–8. Epub 1997/04/01. doi: 10.1016/s0165-5728(96)00160-9 9119960.

85. Epstein LG, Gendelman HE. Human immunodeficiency virus type 1 infection of the nervous system: pathogenetic mechanisms. Annals of neurology. 1993;33(5):429–36. Epub 1993/05/01. doi: 10.1002/ana.410330502 8498818.

86. Brabers NA, Nottet HS. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. European journal of clinical investigation. 2006;36(7):447–58. Epub 2006/06/27. doi: 10.1111/j.1365-2362.2006.01657.x 16796601.

87. Breen EC, Rezai AR, Nakajima K, Beall GN, Mitsuyasu RT, Hirano T, et al. Infection with HIV is associated with elevated IL-6 levels and production. Journal of immunology (Baltimore, Md: 1950). 1990;144(2):480–4. Epub 1990/01/15. 2295799.

88. Kaul M, Lipton SA. Mechanisms of neuronal injury and death in HIV-1 associated dementia. Current HIV research. 2006;4(3):307–18. Epub 2006/07/18. doi: 10.2174/157016206777709384 16842083.

89. Monnet-Tschudi F, Defaux A, Braissant O, Cagnon L, Zurich MG. Methods to assess neuroinflammation. Current protocols in toxicology. 2011;Chapter 12:Unit12.9. Epub 2011/11/08. doi: 10.1002/0471140856.tx1219s50 22058053.

90. Roque PJ, Dao K, Costa LG. Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology. 2016;56:204–14. Epub 2016/08/21. doi: 10.1016/j.neuro.2016.08.006 27543421; PubMed Central PMCID: PMC5048600.

91. Roque PJ, Costa LG. Co-Culture of Neurons and Microglia. Current protocols in toxicology. 2017;74:11.24.1–11.24.17. Epub 2017/11/09. doi: 10.1002/cptx.32 29117434; PubMed Central PMCID: PMC5774987.

92. Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2004;18(13):1618–20. Epub 2004/08/21. doi: 10.1096/fj.04-1945fje 15319363.

93. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120(3):421–33. Epub 2005/02/15. doi: 10.1016/j.cell.2004.12.020 15707899.

94. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science (New York, NY). 2001;291(5504):657–61. Epub 2001/02/07. doi: 10.1126/science.291.5504.657 11158678.

95. Viviani B. Coculturing neurons and glial cells. Current protocols in toxicology. 2003;Chapter 12:Unit12.0. Epub 2003/05/01. doi: 10.1002/0471140856.tx1210s15 23045091.

96. Viviani B. Preparation and coculture of neurons and glial cells. Current protocols in cell biology. 2006;Chapter 2:Unit 2.7. Epub 2008/01/30. doi: 10.1002/0471143030.cb0207s32 18228481.

97. Smirnova L, Harris G, Delp J, Valadares M, Pamies D, Hogberg HT, et al. A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Archives of toxicology. 2016;90(11):2725–43. Epub 2015/12/10. doi: 10.1007/s00204-015-1637-z 26647301; PubMed Central PMCID: PMC5065586.

98. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. The Journal of biological chemistry. 2002;277(41):38884–94. Epub 2002/07/30. doi: 10.1074/jbc.M205518200 12145295.

99. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2005;25(27):6329–42. Epub 2005/07/08. doi: 10.1523/jneurosci.1746-05.2005 16000623; PubMed Central PMCID: PMC6725277.

100. Schildknecht S, Karreman C, Poltl D, Efremova L, Kullmann C, Gutbier S, et al. Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. Altex. 2013;30(4):427–44. Epub 2013/11/01. doi: 10.14573/altex.2013.4.427 24173167.

101. Sullivan KF, Cleveland DW. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(12):4327–31. Epub 1986/06/01. doi: 10.1073/pnas.83.12.4327 3459176; PubMed Central PMCID: PMC323725.

102. Caccamo DV, Herman MM, Frankfurter A, Katsetos CD, Collins VP, Rubinstein LJ. An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated beta-tubulin isotype. The American journal of pathology. 1989;135(5):801–13. Epub 1989/11/01. 2817080; PubMed Central PMCID: PMC1880094.

103. Bernhardt R, Matus A. Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. The Journal of comparative neurology. 1984;226(2):203–21. Epub 1984/06/20. doi: 10.1002/cne.902260205 6736300.

104. Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer's disease. Journal of neuroimmunology. 2000;108(1–2):227–35. Epub 2000/07/20. doi: 10.1016/s0165-5728(00)00285-x 10900358.

105. Becher B, Antel JP. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia. 1996;18(1):1–10. Epub 1996/09/01. doi: 10.1002/(SICI)1098-1136(199609)18:1<1::AID-GLIA1>3.0.CO;2-6 8891687.

106. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nature neuroscience. 2014;17(1):131–43. Epub 2013/12/10. doi: 10.1038/nn.3599 24316888; PubMed Central PMCID: PMC4066672.

107. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. Journal of immunology (Baltimore, Md: 1950). 1995;154(9):4309–21. Epub 1995/05/01. 7722289.

108. Hendrickson AE, Tillakaratne NJ, Mehra RD, Esclapez M, Erickson A, Vician L, et al. Differential localization of two glutamic acid decarboxylases (GAD65 and GAD67) in adult monkey visual cortex. The Journal of comparative neurology. 1994;343(4):566–81. Epub 1994/05/22. doi: 10.1002/cne.903430407 8034788.

109. Holzschuh J, Ryu S, Aberger F, Driever W. Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mechanisms of development. 2001;101(1–2):237–43. Epub 2001/03/07. doi: 10.1016/s0925-4773(01)00287-8 11231083.

110. Miller GW, Gainetdinov RR, Levey AI, Caron MG. Dopamine transporters and neuronal injury. Trends in pharmacological sciences. 1999;20(10):424–9. Epub 1999/09/28. doi: 10.1016/s0165-6147(99)01379-6 10498956.

111. Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Progress in neurobiology. 1993;41(1):31–91. Epub 1993/07/01. doi: 10.1016/0301-0082(93)90040-y 8321908.

112. Chacko LW, Cerf JA. Histochemical localization of cholinesterase in the amphibian spinal cord and alterations following ventral root section. Journal of anatomy. 1960;94:74–81. Epub 1960/01/01. 13808985; PubMed Central PMCID: PMC1244416.

113. Koelle GB. The histochemical localization of cholinesterases in the central nervous system of the rat. The Journal of comparative neurology. 1954;100(1):211–35. Epub 1954/02/01. doi: 10.1002/cne.901000108 13130712.

114. Pearson R, Kim YK, Hokello J, Lassen K, Friedman J, Tyagi M, et al. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. Journal of virology. 2008;82(24):12291–303. Epub 2008/10/03. doi: 10.1128/JVI.01383-08 18829756; PubMed Central PMCID: PMC2593349.

115. Kim YK, Mbonye U, Hokello J, Karn J. T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway. J Mol Biol. 2011;410(5):896–916. Epub 2011/07/19. doi: 10.1016/j.jmb.2011.03.054 21763495; PubMed Central PMCID: PMC3139146.

116. Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy currents. 2011;11(2):56–63. Epub 2011/06/21. doi: 10.5698/1535-7511-11.2.56 21686307; PubMed Central PMCID: PMC3117497.

117. Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA, et al. Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain: a journal of neurology. 2016;139(Pt 2):431–43. Epub 2015/11/27. doi: 10.1093/brain/awv325 26608744; PubMed Central PMCID: PMC4805082.

118. Kovacs AD, Hof C, Pearce DA. Abnormally increased surface expression of AMPA receptors in the cerebellum, cortex and striatum of Cln3(-/-) mice. Neuroscience letters. 2015;607:29–34. Epub 2015/09/17. doi: 10.1016/j.neulet.2015.09.012 26375929; PubMed Central PMCID: PMC4631631.

119. Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in neurobiology. 2000;61(2):133–68. Epub 2000/03/08. doi: 10.1016/s0301-0082(99)00046-5 10704996.

120. Arias C, Sharma N, Davies P, Shafit-Zagardo B. Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. Journal of neurochemistry. 1993;61(2):673–82. Epub 1993/08/01. doi: 10.1111/j.1471-4159.1993.tb02172.x 8336148.

121. Qiao S, Peng R, Yan H, Gao Y, Wang C, Wang S, et al. Reduction of phosphorylated synapsin I (ser-553) leads to spatial memory impairment by attenuating GABA release after microwave exposure in Wistar rats. PloS one. 2014;9(4):e95503. Epub 2014/04/20. doi: 10.1371/journal.pone.0095503 24743689; PubMed Central PMCID: PMC3990695.

122. Melega WP, Cho AK, Harvey D, Lacan G. Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling. Synapse (New York, NY). 2007;61(4):216–20. Epub 2007/01/19. doi: 10.1002/syn.20365 17230548.

123. Ellis RJ, Childers ME, Cherner M, Lazzaretto D, Letendre S, Grant I. Increased human immunodeficiency virus loads in active methamphetamine users are explained by reduced effectiveness of antiretroviral therapy. The Journal of infectious diseases. 2003;188(12):1820–6. Epub 2003/12/16. doi: 10.1086/379894 14673760.

124. Moore DJ, Blackstone K, Woods SP, Ellis RJ, Atkinson JH, Heaton RK, et al. Methamphetamine use and neuropsychiatric factors are associated with antiretroviral non-adherence. AIDS care. 2012;24(12):1504–13. Epub 2012/04/26. doi: 10.1080/09540121.2012.672718 22530794; PubMed Central PMCID: PMC3466384.

125. Feldman MB, Thomas JA, Alexy ER, Irvine MK. Crystal methamphetamine use and HIV medical outcomes among HIV-infected men who have sex with men accessing support services in New York. Drug and alcohol dependence. 2015;147:266–71. Epub 2014/12/09. doi: 10.1016/j.drugalcdep.2014.09.780 25482501.

126. Matsumoto RR, Bowen WD, Tom MA, Vo VN, Truong DD, De Costa BR. Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma receptor antagonism. European journal of pharmacology. 1995;280(3):301–10. Epub 1995/07/14. doi: 10.1016/0014-2999(95)00208-3 8566098.

127. Ferris RM, Tang FL, Chang KJ, Russell A. Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain. Life sciences. 1986;38(25):2329–37. Epub 1986/06/23. doi: 10.1016/0024-3205(86)90640-5 2873494.

128. Ghelardini C, Galeotti N, Bartolini A. Pharmacological identification of SM-21, the novel sigma(2) antagonist. Pharmacology, biochemistry, and behavior. 2000;67(3):659–62. Epub 2001/02/13. doi: 10.1016/s0091-3057(00)00405-6 11164098.

129. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71. Epub 2006/11/23. doi: 10.1038/nm1511 17115046.

130. Kramski M, Gaeguta AJ, Lichtfuss GF, Rajasuriar R, Crowe SM, French MA, et al. Novel sensitive real-time PCR for quantification of bacterial 16S rRNA genes in plasma of HIV-infected patients as a marker for microbial translocation. J Clin Microbiol. 2011;49(10):3691–3. Epub 2011/08/05. doi: 10.1128/JCM.01018-11 21813723; PubMed Central PMCID: PMC3187295.

131. Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, et al. Editorial neuroAIDS review. AIDS (London, England). 2011;25(2):123–41. Epub 2010/11/16. doi: 10.1097/QAD.0b013e328340fd42 21076277; PubMed Central PMCID: PMC4464840.

132. Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. The Journal of infectious diseases. 2011;204(5):753–60. Epub 2011/08/17. doi: 10.1093/infdis/jir387 21844301; PubMed Central PMCID: PMC3156103.

133. Cole MA, Castellon SA, Perkins AC, Ureno OS, Robinet MB, Reinhard MJ, et al. Relationship between psychiatric status and frontal-subcortical systems in HIV-infected individuals. Journal of the International Neuropsychological Society: JINS. 2007;13(3):549–54. Epub 2007/04/21. doi: 10.1017/S135561770707066X 17445305; PubMed Central PMCID: PMC2880510.

134. Klunder AD, Chiang MC, Dutton RA, Lee SE, Toga AW, Lopez OL, et al. Mapping cerebellar degeneration in HIV/AIDS. Neuroreport. 2008;19(17):1655–9. Epub 2008/09/23. doi: 10.1097/WNR.0b013e328311d374 18806691; PubMed Central PMCID: PMC2713099.

135. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, et al. HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nature reviews Neurology. 2016;12(4):234–48. Epub 2016/03/12. doi: 10.1038/nrneurol.2016.27 26965674; PubMed Central PMCID: PMC4937456.

136. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nature neuroscience. 2016;19(8):987–91. Epub 2016/07/28. doi: 10.1038/nn.4338 27459405.

137. Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, et al. Mutations in NR4A2 associated with familial Parkinson disease. Nature genetics. 2003;33(1):85–9. Epub 2002/12/24. doi: 10.1038/ng1066 12496759.

138. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137(1):47–59. Epub 2009/04/07. doi: 10.1016/j.cell.2009.01.038 19345186; PubMed Central PMCID: PMC2754279.

139. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nature reviews Immunology. 2011;11(11):775–87. Epub 2011/10/26. doi: 10.1038/nri3086 22025055.

140. Eyo UB, Wu LJ. Bidirectional microglia-neuron communication in the healthy brain. Neural plasticity. 2013;2013:456857. Epub 2013/10/01. doi: 10.1155/2013/456857 24078884; PubMed Central PMCID: PMC3775394.

141. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science (New York, NY). 2011;333(6048):1456–8. Epub 2011/07/23. doi: 10.1126/science.1202529 21778362.

142. Scianni M, Antonilli L, Chece G, Cristalli G, Di Castro MA, Limatola C, et al. Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity. Journal of neuroinflammation. 2013;10:108. Epub 2013/08/29. doi: 10.1186/1742-2094-10-108 23981568; PubMed Central PMCID: PMC3765929.

143. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47. doi: 10.1523/JNEUROSCI.1860-14.2014 25186741; PubMed Central PMCID: PMC4152602.

144. Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open biology. 2013;3(12):130181. Epub 2013/12/20. doi: 10.1098/rsob.130181 24352739; PubMed Central PMCID: PMC3877844.

145. Wolf Y, Yona S, Kim KW, Jung S. Microglia, seen from the CX3CR1 angle. Frontiers in cellular neuroscience. 2013;7:26. Epub 2013/03/20. doi: 10.3389/fncel.2013.00026 23507975; PubMed Central PMCID: PMC3600435.

146. Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal 'On' and 'Off' signals control microglia. Trends in neurosciences. 2007;30(11):596–602. Epub 2007/10/24. doi: 10.1016/j.tins.2007.08.007 17950926.

147. Nadeau S, Rivest S. Glucocorticoids play a fundamental role in protecting the brain during innate immune response. J Neurosci. 2003;23(13):5536–44. Epub 2003/07/05. doi: 10.1523/JNEUROSCI.23-13-05536.2003 12843254.

148. Heikinheimo O, Kontula K, Croxatto H, Spitz I, Luukkainen T, Lahteenmaki P. Plasma concentrations and receptor binding of RU 486 and its metabolites in humans. Journal of steroid biochemistry. 1987;26(2):279–84. Epub 1987/02/01. doi: 10.1016/0022-4731(87)90083-5 3560943.

149. Morale MC, Serra PA, Delogu MR, Migheli R, Rocchitta G, Tirolo C, et al. Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. Faseb j. 2004;18(1):164–6. Epub 2003/11/25. doi: 10.1096/fj.03-0501fje 14630699.

150. Sugama S, Takenouchi T, Kitani H, Fujita M, Hashimoto M. Microglial activation is inhibited by corticosterone in dopaminergic neurodegeneration. J Neuroimmunol. 2009;208(1–2):104–14. Epub 2009/02/10. doi: 10.1016/j.jneuroim.2009.01.016 19201037.

151. Nichols NR, Zieba M, Bye N. Do glucocorticoids contribute to brain aging? Brain Res Brain Res Rev. 2001;37(1–3):273–86. Epub 2001/12/18. doi: 10.1016/s0165-0173(01)00131-x 11744092.

152. Murphy EK, Spencer RL, Sipe KJ, Herman JP. Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rat hippocampus. Endocrinology. 2002;143(4):1362–70. Epub 2002/03/19. doi: 10.1210/endo.143.4.8740 11897693.

153. Van Bogaert T, De Bosscher K, Libert C. Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine & growth factor reviews. 2010;21(4):275–86. Epub 2010/05/12. doi: 10.1016/j.cytogfr.2010.04.003 20456998.

154. Cenker JJ, Stultz RD, McDonald D. Brain Microglial Cells Are Highly Susceptible to HIV-1 Infection and Spread. AIDS Res Hum Retroviruses. 2017;33(11):1155–65. Epub 2017/05/11. doi: 10.1089/AID.2017.0004 28486838; PubMed Central PMCID: PMC5665495.

155. Dobrowolski C, Valadkhan S, Graham AC, Shukla M, Ciuffi A, Telenti A, et al. Entry of Polarized Effector Cells into Quiescence Forces HIV Latency. MBio. 2019;10(2). Epub 2019/03/28. doi: 10.1128/mBio.00337-19 30914509.

156. Jadlowsky JK, Wong JY, Graham AC, Dobrowolski C, Devor RL, Adams MD, et al. Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat. Mol Cell Biol. 2014;34(11):1911–28. Epub 2014/03/19. doi: 10.1128/MCB.01013-13 24636995; PubMed Central PMCID: PMC4019061.

157. Pearson R, Kim YK, Hokello J, Lassen K, Friedman J, Tyagi M, et al. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol. 2008;82(24):12291–303. doi: 10.1128/JVI.01383-08 18829756.

158. Colfax G, Shoptaw S. The methamphetamine epidemic: implications for HIV prevention and treatment. Current HIV/AIDS reports. 2005;2(4):194–9. Epub 2005/12/14. doi: 10.1007/s11904-005-0016-4 16343378.

159. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD, et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. The American journal of psychiatry. 2005;162(8):1461–72. Epub 2005/08/02. doi: 10.1176/appi.ajp.162.8.1461 16055767.

160. Kesby JP, Heaton RK, Young JW, Umlauf A, Woods SP, Letendre SL, et al. Methamphetamine Exposure Combined with HIV-1 Disease or gp120 Expression: Comparison of Learning and Executive Functions in Humans and Mice. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2015;40(8):1899–909. Epub 2015/02/06. doi: 10.1038/npp.2015.39 25652249; PubMed Central PMCID: PMC4839513.

161. Volkow ND, Li TK. Drug addiction: the neurobiology of behaviour gone awry. Nature reviews Neuroscience. 2004;5(12):963–70. Epub 2004/11/20. doi: 10.1038/nrn1539 15550951.

162. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American journal of psychiatry. 2001;158(3):377–82. Epub 2001/03/07. doi: 10.1176/appi.ajp.158.3.377 11229977.

163. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature reviews Neuroscience. 2011;12(11):652–69. Epub 2011/10/21. doi: 10.1038/nrn3119 22011681; PubMed Central PMCID: PMC3462342.

164. Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, et al. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Archives of general psychiatry. 2006;63(1):90–100. Epub 2006/01/04. doi: 10.1001/archpsyc.63.1.90 16389202.

165. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, et al. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug and alcohol dependence. 2013;129(3):167–79. Epub 2013/01/01. doi: 10.1016/j.drugalcdep.2012.11.016 23273775.

166. Melega WP, Lacan G, Harvey DC, Huang SC, Phelps ME. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428—positron emission tomography studies. Neuroscience letters. 1998;258(1):17–20. Epub 1999/01/06. doi: 10.1016/s0304-3940(98)00845-3 9876041.

167. Villemagne V, Yuan J, Wong DF, Dannals RF, Hatzidimitriou G, Mathews WB, et al. Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1998;18(1):419–27. Epub 1998/01/24. doi: 10.1523/JNEUROSCI.18-01-00419.1998 9412518.

168. Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2004;24(26):6028–36. Epub 2004/07/02. doi: 10.1523/jneurosci.0713-04.2004 15229250.

169. Ellis RJ, Calero P, Stockin MD. HIV infection and the central nervous system: a primer. Neuropsychology review. 2009;19(2):144–51. Epub 2009/05/06. doi: 10.1007/s11065-009-9094-1 19415500; PubMed Central PMCID: PMC2690832.

170. Soontornniyomkij V, Kesby JP, Morgan EE, Bischoff-Grethe A, Minassian A, Brown GG, et al. Effects of HIV and Methamphetamine on Brain and Behavior: Evidence from Human Studies and Animal Models. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology. 2016;11(3):495–510. Epub 2016/08/04. doi: 10.1007/s11481-016-9699-0 27484318; PubMed Central PMCID: PMC4985024.

171. Worley MJ, Swanson AN, Heinzerling KG, Roche DJ, Shoptaw S. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug and alcohol dependence. 2016;162:245–50. Epub 2016/03/20. doi: 10.1016/j.drugalcdep.2016.02.036 26993372; PubMed Central PMCID: PMC5349508.

172. Snider SE, Vunck SA, van den Oord EJ, Adkins DE, McClay JL, Beardsley PM. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. European journal of pharmacology. 2012;679(1–3):75–80. Epub 2012/02/07. doi: 10.1016/j.ejphar.2012.01.013 22306241; PubMed Central PMCID: PMC3973724.

173. Beardsley PM, Shelton KL, Hendrick E, Johnson KW. The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. European journal of pharmacology. 2010;637(1–3):102–8. Epub 2010/04/20. doi: 10.1016/j.ejphar.2010.04.010 20399770; PubMed Central PMCID: PMC2878837.

174. Charntikov S, Pittenger ST, Thapa I, Bastola DR, Bevins RA, Pendyala G. Ibudilast reverses the decrease in the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1) produced by chronic methamphetamine intake in rats. Drug and alcohol dependence. 2015;152:15–23. Epub 2015/05/13. doi: 10.1016/j.drugalcdep.2015.04.012 25962787.

175. LaVoie MJ, Card JP, Hastings TG. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Experimental neurology. 2004;187(1):47–57. Epub 2004/04/15. doi: 10.1016/j.expneurol.2004.01.010 15081587.

176. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, et al. Methamphetamine causes microglial activation in the brains of human abusers. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008;28(22):5756–61. Epub 2008/05/30. doi: 10.1523/jneurosci.1179-08.2008 18509037; PubMed Central PMCID: PMC2491906.

177. Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM. HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. Journal of neurovirology. 2017. Epub 2017/12/20. doi: 10.1007/s13365-017-0604-2 29256041.

178. Scholz D, Poltl D, Genewsky A, Weng M, Waldmann T, Schildknecht S, et al. Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. Journal of neurochemistry. 2011;119(5):957–71. Epub 2011/03/26. doi: 10.1111/j.1471-4159.2011.07255.x 21434924.

179. Landmann R, Muller B, Zimmerli W. CD14, new aspects of ligand and signal diversity. Microbes and infection. 2000;2(3):295–304. Epub 2000/04/12. doi: 10.1016/s1286-4579(00)00298-7 10758406.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#