A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin
Autoři:
Beata Zalewska-Piątek aff001; Marcin Olszewski aff001; Tomasz Lipniacki aff002; Sławomir Błoński aff002; Miłosz Wieczór aff003; Piotr Bruździak aff003; Anna Skwarska aff004; Bogdan Nowicki aff005; Stella Nowicki aff005; Rafał Piątek aff001
Působiště autorů:
Department of Molecular Microbiology and Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
aff001; Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
aff002; Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
aff003; Department of Oncology, University of Oxford, Oxford, United Kingdom
aff004; Nowicki Institute for Woman’s Health Research, Brentwood, Tennessee, United States of America
aff005
Vyšlo v časopise:
A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog 16(1): e32767. doi:10.1371/journal.ppat.1008247
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008247
Souhrn
In this study, we established a dynamic micromodel of urinary tract infection to analyze the impact of UT-segment-specific urinary outflow on the persistence of E. coli colonization. We found that the adherence of Dr+ E. coli to bladder T24 transitional cells and type IV collagen is maximal at lowest shear stress and is reduced by any increase in flow velocity. The analyzed adherence was effective in the whole spectrum of physiological shear stress and was almost irreversible over the entire range of generated shear force. Once Dr+ E. coli bound to host cells or collagen, they did not detach even in the presence of elevated shear stress or of chloramphenicol, a competitive inhibitor of binding. Investigating the role of epithelial surface architecture, we showed that the presence of budding cells–a model microarchitectural obstacle–promotes colonization of the urinary tract by E. coli. We report a previously undescribed phenomenon of epithelial cell “rolling-shedding” colonization, in which the detached epithelial cells reattach to the underlying cell line through a layer of adherent Dr+ E. coli. This rolling-shedding colonization progressed continuously due to “refilling” induced by the flow-perturbing obstacle. The shear stress of fluid containing free-floating bacteria fueled the rolling, while providing an uninterrupted supply of new bacteria to be trapped by the rolling cell. The progressive rolling allows for transfer of briefly attached bacteria onto the underlying monolayer in a repeating cascading event.
Klíčová slova:
Adhesins – Bladder – Cell binding – Collagens – Host cells – Pili and fimbriae – Renal system – Shear stresses
Zdroje
1. Stamm WE, Norrby SR. Urinary Tract Infections: Disease Panorama and Challenges. J Infect Dis. 2002;183(S1): S1–4.
2. Foxman B. The epidemiology of urinary tract infection. Nature Reviews Urology. 2010;7: 653–660. doi: 10.1038/nrurol.2010.190 21139641
3. Foxman B. Urinary tract infection syndromes. Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America. 2014;28: 1–13. doi: 10.1016/j.idc.2013.09.003 24484571
4. Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-Usher Fimbriae of Escherichia coli. PLoS One. 2013;8(1):e52835. doi: 10.1371/journal.pone.0052835 23382825
5. Zavyalov V, Zavialov A, Zav’Yalova G, Korpela T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: Structure and function from a clinical standpoint. FEMS Microbiology Reviews. 2010;34: 317–378. doi: 10.1111/j.1574-6976.2009.00201.x 20070375
6. Geibel S, Waksman G. The molecular dissection of the chaperone-usher pathway. Biochimica et Biophysica Acta—Molecular Cell Research. 2014;1843: 1559–1567.
7. Busch A, Phan G, Waksman G. Molecular mechanism of bacterial type 1 and P pili assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015 Mar 6;373(2036). pii: 20130153. doi: 10.1098/rsta.2013.0153
8. Servin AL. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): Current insights and future challenges. Clin Microbiol Rev. 2014;27: 823–869. doi: 10.1128/CMR.00036-14 25278576
9. Anderson KL, Billington J, Pettigrew D, Cota E, Simpson P, Roversi P, et al. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell. 2004;15: 647–657. doi: 10.1016/j.molcel.2004.08.003 15327779
10. Cota E, Jones C, Simpson P, Altroff H, Anderson KL, Du Merle L, et al. The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol. 2006;62: 356–366. doi: 10.1111/j.1365-2958.2006.05375.x 16965519
11. Jȩdrzejczak R, Dauter Z, Dauter M, Piątek R, Zalewska B, Mróz M, et al. Structure of DraD invasin from uropathogenic Escherichia coli: A dimer with swapped β-tails. Acta Crystallogr Sect D Biol Crystallogr. 2006;62: 157–164.
12. Piątek R, Zalewska B, Kolaj O, Ferens M, Nowicki B, Kur J. Molecular aspects of biogenesis of Escherichia coli Dr Fimbriae: Characterization of DraB-DraE complexes. Infect Immun. 2005;73: 135–145. doi: 10.1128/IAI.73.1.135-145.2005 15618148
13. Berger CN, Billker O, Meyer TF, Servin AL, Kansau I. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol. 2004;52: 963–983. doi: 10.1111/j.1365-2958.2004.04033.x 15130118
14. Guignot J, Peiffer I, Bernet-Camard MF, Lublin DM, Carnoy C, Moseley SL, et al. Recruitment of CD55 and CD66e brush border-associated glycosylphosphatidylinositol-anchored proteins by members of the Afa/Dr diffusely adhering family of Escherichia coli that infect the human polarized intestinal Caco-2/TC7 cells. Infect Immun. 2000;68: 3554–3563. doi: 10.1128/iai.68.6.3554-3563.2000 10816511
15. Nowicki B, Moulds J, Hull R, Hull S. A hemagglutinin of uropathogenic Escherichia coli recognizes the Dr blood group antigen. Infect Immun. 1988;56: 1057–1060. 2895740
16. Westerlund B, Kuusela P, Risteli J, Risteli L, Vartio T, Rauvala H, et al. The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen‐binding protein. Mol Microbiol. 1989;3: 329–337. doi: 10.1111/j.1365-2958.1989.tb00178.x 2568575
17. Carnoy C, Moseley SL. Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol Microbiol. 1997;23: 365–379. doi: 10.1046/j.1365-2958.1997.2231590.x 9044270
18. Korotkova N, Cota E, Lebedin Y, Monpouet S, Guignot J, Servin AL, et al. A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J Biol Chem. 2006;281: 29120–29130. doi: 10.1074/jbc.M605681200 16882658
19. Pettigrew D, Anderson KL, Billington J, Cota E, Simpson P, Urvil P, et al. High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem. 2004;279: 46851–46857. doi: 10.1074/jbc.M409284200 15331605
20. Sokurenko E V., Vogel V, Thomas WE. Catch-Bond Mechanism of Force-Enhanced Adhesion: Counterintuitive, Elusive, but … Widespread? Cell Host and Microbe. 2008;4: 314–323. doi: 10.1016/j.chom.2008.09.005 18854236
21. Thomas W. Catch Bonds in Adhesion. Annu Rev Biomed Eng. 2008;10: 39–57. doi: 10.1146/annurev.bioeng.10.061807.160427 18647111
22. Thomas WE, Vogel V, Sokurenko E. Biophysics of Catch Bonds. Annu Rev Biophys. 2008;37: 399–416. doi: 10.1146/annurev.biophys.37.032807.125804 18573088
23. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko E V. Bacterial adhesion to target cells enhanced by shear force. Cell. 2002;109: 913–922. doi: 10.1016/s0092-8674(02)00796-1 12110187
24. Sauer MM, Jakob RP, Eras J, Baday S, Eriş D, Navarra G, et al. Catch-bond mechanism of the bacterial adhesin FimH. Nat Commun. 2016 Mar 7;7:10738. doi: 10.1038/ncomms10738 26948702
25. Anderson BN, Ding AM, Nilsson LM, Kusuma K, Tchesnokova V, Vogel V, et al. Weak rolling adhesion enhances bacterial surface colonization. J Bacteriol. 2007;189: 1794–1802. doi: 10.1128/JB.00899-06 17189376
26. Nilsson LM, Thomas WE, Sokurenko E V., Vogel V. Elevated shear stress protects Escherichia coli cells adhering to surfaces via catch bonds from detachment by soluble inhibitors. Appl Environ Microbiol. 2006;72: 3005–3010. doi: 10.1128/AEM.72.4.3005-3010.2006 16598008
27. Nilsson LM, Thomas WE, Trintchina E, Vogel V, Sokurenko E V. Catch bond-mediated adhesion without a shear threshold: Trimannose versus monomannose interactions with the FimH adhesin of Escherichia coli. J Biol Chem. 2006;281: 16656–16663. doi: 10.1074/jbc.M511496200 16624825
28. Thomas WE, Nilsson LM, Forero M, Sokurenko E V., Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Mol Microbiol. 2004;53: 1545–1557. doi: 10.1111/j.1365-2958.2004.04226.x 15387828
29. Gounon P, Jouve M, Le Bouguénec C. Immunocytochemistry of the AfaE adhesin and AfaD invasin produced by pathogenic Escherichia coli strains during interaction of the bacteria with HeLa cells by high-resolution scanning electron microscopy. Microbes Infect. 2000;2: 359–365. doi: 10.1016/s1286-4579(00)00331-2 10817637
30. De Llano DG, Esteban-Fernández A, Sánchez-Patán F, Martín-Álvarez PJ, Moreno-Arribas MV, Bartolomé B. Anti-adhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against uropathogenic escherichia coli in bladder epithelial cell cultures. Int J Mol Sci. 2015;16: 12119–12130. doi: 10.3390/ijms160612119 26023719
31. Iyer JK, Dickey A, Rouhani P, Kaul A, Govindaraju N, Singh RN, et al. Nanodiamonds facilitate killing of intracellular uropathogenic e. Coli in an in vitro model of urinary tract infection pathogenesis. PLoS One. 2018 Jan 11;13(1):e0191020. doi: 10.1371/journal.pone.0191020 29324795
32. Hunstad DA, Justice SS, Hung CS, Lauer SR, Hultgren SJ. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun. 2005;73: 3999–4006. doi: 10.1128/IAI.73.7.3999-4006.2005 15972487
33. Garcia MI, Gounon P, Courcoux P, Labigne A, Le Bouguénec C. The afimbrial adhesive sheath encoded by the afa-3 gene cluster of pathogenic Escherichia coli is composed of two adhesins. Mol Microbiol. 1996;19: 683–693. doi: 10.1046/j.1365-2958.1996.394935.x 8820639
34. Goluszko P, Popov V, Selvarangan R, Nowicki S, Pham T, Nowicki BJ. Dr Fimbriae Operon of Uropathogenic Escherichia coli Mediate Microtubule‐Dependent Invasion to the HeLa Epithelial Cell Line. J Infect Dis. 2008;176: 158–167.
35. Aprikian P, Interlandi G, Kidd BA, Le Trong I, Tchesnokova V, Yakovenko O, et al. The bacterial fimbrial tip acts as a mechanical force sensor. PLoS Biol. 2011 May;9(5):e1000617. doi: 10.1371/journal.pbio.1000617 21572990
36. Spaulding CN, Klein RD, Schreiber HL, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: The path of least resistance? npj Biofilms Microbiomes. 2018 Feb 27;4:4. doi: 10.1038/s41522-018-0048-3 29507749
37. Pettigrew DM, Roversi P, Davies SG, Russell AJ, Lea SM. A structural study of the interaction between the Dr haemagglutinin DraE and derivatives of chloramphenicol. Acta Crystallogr Sect D Biol Crystallogr. 2009;65: 513–522.
38. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science. 1998;282: 1494–1497. doi: 10.1126/science.282.5393.1494 9822381
39. Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. Bad bugs and beleaguered bladders: Interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci. 2002;97: 8829–8835.
40. Fukushi Y, Orikasa S, Kagayama M. An electron microscopic study of the interaction between vesical epithelium and E. coli. Invest Urol. 1979;17: 61–68. 376485
41. McTaggart LA, Rigby RC, Elliott TSJ. The pathogenesis of urinary tract infections associated with Escherichia coli, Staphylococcus saprophyticus and S. epidermidis. J Med Microbiol. 1990;32: 135–141. doi: 10.1099/00222615-32-2-135 2192064
42. Durlofsky L, Brady JF, Bossis G. Dynamic Simulation of Hydrodynamically Interacting Particles. J Fluid Mech. 1987;180: 21–49.
43. Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci. 2006;103: 14170–14175. doi: 10.1073/pnas.0602136103 16968784
44. Wu J, Miao Y, Abraham SN. The multiple antibacterial activities of the bladder epithelium. Ann Transl Med. 2017 Jan;5(2):35. doi: 10.21037/atm.2016.12.71 28217700
45. Piątek R, Bruździak P, Zalewska-Piątek B, Kur J, Stangret J. Preclusion of irreversible destruction of Dr adhesin structures by a high activation barrier for the unfolding stage of the fimbrial DraE subunit. Biochemistry. 2009;48: 11807–11816. doi: 10.1021/bi900920k 19891507
46. Piątek R, Bruździak P, Wojciechowski M, Zalewska-Piątek B, Kur J. The noncanonical disulfide bond as the important stabilizing element of the immunoglobulin fold of the Dr fimbrial DraE subunit. Biochemistry. 2010;49: 1460–1468. doi: 10.1021/bi901896b 20082522
47. Pilipczuk J, Zalewska-Piątek B, Bruździak P, Czub J, Wieczór M, Olszewski M, et al. Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli. J Biol Chem. 2017;292: 16136–16149. doi: 10.1074/jbc.M117.785477 28739804
48. Nowicki B. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med. 2004;178: 2115–2121.
49. Pham TQ, Goluszko P, Popov V, Nowicki S, Nowicki BJ. Molecular cloning and characterization of Dr-II, a nonfimbrial adhesin- i-like adhesin isolated from gestational pyelonephritis-associated Escherichia coli that binds to decay-accelerating factor. Infect Immun. 1997;65: 4309–4318. 9317041
50. Goldman AJ, Cox RG, Brenner H. Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chem Eng Sci. 1967;22: 653–660.
51. Goluszko P, Selvarangan R, Nowicki BJ, Nowicki S, Hart A, Pawelczyk E, et al. Rapid receptor-clustering assay to detect uropathogenic and diarrheal Escherichia coli isolates bearing adhesins of the Dr family. J Clin Microbiol. 2001;39: 2317–2320. doi: 10.1128/JCM.39.6.2317-2320.2001 11376081
52. Goluszko P, Selvarangan R, Popov V, Pham T, Wen JW, Singhal J. Decay-accelerating factor and cytoskeleton redistribution pattern in HeLa cells infected with recombinant Escherichia coli strains expressing Dr family of adhesins. Infect Immun. 1999;67: 3989–3997. 10417165
53. Hudault S, Spiller OB, Morgan BP, Servin AL. Human diffusely adhering Escherichia coli expressing Afa/Dr adhesins that use human CD55 (decay-accelerating factor) as a receptor does not bind the rodent and pig analogues of CD55. Infect Immun. 2004;72: 4859–4863. doi: 10.1128/IAI.72.8.4859-4863.2004 15271948
54. Nowicki B, Martens M, Hart A, Nowicki S. Gestational Age‐Dependent Distribution of Escherichia coli Fimbriae in Pregnant Patients with Pyelonephritis. Ann N Y Acad Sci. 1994;730: 290–291. doi: 10.1111/j.1749-6632.1994.tb44268.x 7915894
55. Hart A, Nowicki BJ, Reisner B, Pawelczyk E, Goluszko P, Urvil P, et al. Ampicillin‐Resistant Escherichia coli in Gestational Pyelonephritis: Increased Occurrence and Association with the Colonization Factor Dr Adhesin. J Infect Dis. 2002;183: 1526–1529.
56. Kaul AK, Kumar D, Nagamani M, Goluszko P, Nowicki S, Nowicki BJ. Rapid cyclic changes in density and accessibility of endometrial ligands for Escherichia coli Dr fimbriae. Infect Immun. 1996;64: 611–615. 8550215
57. Kaul A, Nowicki BJ, Martens MG, Goluszko P, Hart A, Nagamani M, et al. Decay-Accelerating Factor Is Expressed in the Human Endometrium and May Serve as the Attachment Ligand for Dr Pili of Escherichia coli. Am J Reprod Immunol. 1994;32: 194–199. doi: 10.1111/j.1600-0897.1994.tb01114.x 7533500
58. Pacheco LD, Hankins GD, Costantine MM, Anderson GD, Pawelczyk E, Nowicki S, et al. The role of human decay-accelerating factor in the pathogenesis of preterm labor. Am J Perinatol. 2011;28: 565–570. doi: 10.1055/s-0031-1274510 21380985
59. Fang L, Nowicki BJ, Urvil P, Goluszko P, Nowicki S, Young SL, et al. Epithelial Invasion by Escherichia coli Bearing Dr Fimbriae Is Controlled by Nitric Oxide-Regulated Expression of CD55. Infect Immun. 2004;72: 2907–2917. doi: 10.1128/IAI.72.5.2907-2914.2004 15102803
60. Banadakoppa M, Goluszko P, Liebenthal D, Nowicki BJ, Nowicki S, Yallampalli C. PI3K/Akt pathway restricts epithelial adhesion of Dr+ Escherichia coli by down-regulating the expression of decay accelerating factor. Exp Biol Med. 2014;239: 581–594.
61. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology. 2015;13: 269–84. doi: 10.1038/nrmicro3432 25853778
62. Korotkova N, Yarova-Yarovaya Y, Tchesnokova V, Yazvenko N, Carl MA, Stapleton AE, et al. Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the draD invasin. Infect Immun. 2008;76: 3869–3880. doi: 10.1128/IAI.00427-08 18559426
63. Muenzner P, Kengmo Tchoupa A, Klauser B, Brunner T, Putze J, Dobrindt U, et al. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa. PLoS Pathog. 2016 May 12;12(5):e1005608. doi: 10.1371/journal.ppat.1005608 27171273
64. Vaisanen-Rhen V. Fimbria-like hemagglutinin of Escherichia coli O75 strains. Infect Immun. 1984;46: 401–407. 6150006
65. Blomfjeld IC, McClain MS, Eisenstein BI. Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol Microbiol. 1991;5: 1439–1445. doi: 10.1111/j.1365-2958.1991.tb00790.x 1686292
66. Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, et al. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 2013 Jun 12;13:131. doi: 10.1186/1471-2180-13-131 23758700
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2020 Číslo 1
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells
- Broad dengue neutralization in mosquitoes expressing an engineered antibody
- Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly
- Correction: Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses