#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment


Autoři: Wei Wang aff001;  Aayushi Uberoi aff002;  Megan Spurgeon aff001;  Ellery Gronski aff001;  Vladimir Majerciak aff003;  Alexei Lobanov aff004;  Mitchell Hayes aff001;  Amanda Loke aff001;  Zhi-Ming Zheng aff003;  Paul F. Lambert aff001
Působiště autorů: McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America aff001;  Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America aff002;  Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America aff003;  CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, MD, United States of America aff004
Vyšlo v časopise: Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathog 16(1): e32767. doi:10.1371/journal.ppat.1008206
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008206

Souhrn

High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFNγ-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infections.

Klíčová slova:

Cloning – Cytotoxic T cells – Ear infections – Flow cytometry – Immune response – Keratins – T cells – Papillomas


Zdroje

1. Schaper I.D., Marcuzzi G.P., Weissenborn S.J., Kasper H.U., Dries V., Smyth N., Fuchs P., Pfister H. Development of Skin Tumors in Mice Transgenic for Early Genes of Human Papillomavirus Type 8. Cancer Research. 2005;65(4):1394–400. doi: 10.1158/0008-5472.CAN-04-3263 15735026

2. Song S., Liem A., Miller J.A., Lambert P.A. Human Papillomavirus Types 16 E6 and E7 Contribute Differently to Carcinogenesis. Virology. 2000;(267):141–50.

3. Tuong Z.K., Noske K., Kuo P., Bashaw A.A., Teoh S.M., Frazer I.H. Murine HPV16 E7-expressing transgenic skin effectively emulates the cellular and molecular features of human high-grade squamous intraepithelial lesions. Papillomavirus Research. 2018;5:6–20. doi: 10.1016/j.pvr.2017.10.001 29807614

4. Spurgeon M.E., Boon J.A., Horswill M., Barthakur S., Forouzan O., Rader J.S., Beebee D.J. RA, Ahlquista P., Lambert P.F. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. PNAS. 2017.

5. Shin M.K., Pitot H.C., Lambert P.F. Pocket Proteins Suppress Head and Neck Cancer. Cancer Research. 2012;(72):1280–9.

6. Strati K., Pitot H.C., Lambert P.F. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci U S A. 2006;103(38):14152–7. doi: 10.1073/pnas.0606698103 16959885

7. Shin M.K., Payne S., Bilger A., Matkowskyj K.A., Carchman E., Meyer D.S., Bentires-Alj M., Deming D.A., Lambert P.F. Activating Mutations in Pik3ca Contribute to Anal Carcinogenesis in the Presence or Absence of HPV-16 Oncogenes. Clincial Cancer Research. 2019;25(6):1889–900.

8. Stelzer M.K., Pitot H.C., Liem A., Schweizer J., Mahoney C., Lambert P.F. A mouse model for human anal cancer. Cancer Prev Res (Phila). 2010;3(12):1534–41.

9. Brake T., Lambert P.F. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci U S A. 2005;102(7):2490–5. doi: 10.1073/pnas.0409883102 15699322

10. Riley R.R., Duensing S., Brake T., Münger K., Lambert P.F., Arbeit J.M. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Research. 2003;63(16):4862–71. 12941807

11. Borchers A., Braspenning J., Meijer J., Osen W., Gissmann L., Jochmus I. E7-specific cytotoxic T cell tolerance in HPV-transgenic mice. Arch Virol. 1999;144(8):1539–56. doi: 10.1007/s007050050609 10486109

12. Doan T., Chambers M., Street M., Fernando G.J., Herd K., Lambert P., Tindle R. Mice expressing the E7 oncogene of HPV16 in epithelium show central tolerance, and evidence of peripheral anergising tolerance, to E7-encoded cytotoxic T-lymphocyte epitopes. Virology. 1998;244(2):352–64. doi: 10.1006/viro.1998.9128 9601506

13. Doan T., Herd K., Street M., Bryson G., Fernando G., Lambert P., Tindle R. Human Papillomavirus Type 16 E7 Oncoprotein Expressed in Peripheral Epithelium Tolerizes E7-Directed Cytotoxic T-Lymphocyte Precursors Restricted through Human (and Mouse) Major Histocompatibility Complex Class I Alleles. Journal of Virology. 1999;73(7):6166–70. 10364377

14. Ingle A., Ghim S., Joh J., Chepkoech I., Jenson A.B., P. SJ. Novel Laboratory Mouse Papillomavirus (MusPV) Infection. Veterinary Pathology. 2011;48(2):500–5. doi: 10.1177/0300985810377186 20685915

15. Hu J., Budgeon L.R., Cladel N.M., Balogh K., Myers R., Cooper T.K., Christensen N.D. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model. Journal of General Virology. 2015;(96):3554–65.

16. Xue X.Y., Majerciak V., Uberoi A., Kim B.H., Gotte D., Chen X., Cam M., Lambert P.F., Zheng Z.M. The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathog. 2017;13(11):e1006715. doi: 10.1371/journal.ppat.1006715 29176795

17. Hu J., Cladel N.M., Budgeon L.R., Balogh K.K., Christensen N.D. The Mouse Papillomavirus Infection Model. Viruses. 2017;30(9).

18. Meyers J.M., Uberoi A., Grace M., Lambert P.F., Munger K. Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-β Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation. PLoS Pathog. 2017;13.

19. Sundberg J.P., Stearns T.M., Joh J., Proctor M., Ingle A., Silva K.A., Dadras S.S., Jenson A.B., Ghim S. Immune Status, StraiImmune Status, Strain Background, and Anatomic Site of Inoculation Affect MousePapillomavirus (MmuPV1) Induction of Exophytic Papillomas or Endophytic Trichoblastomasn PLOS One. 2014;9(12).

20. Uberoi A., Yoshida S., Frazer I.H., Pitot H.C., Lambert P.F. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease. PLoS Pathog. 2016. May 31;12(5):e1005664.

21. Handisurya A., Day P.M., Thompson C.D., Bonelli M., Lowy D.R., Schiller J.T. Strain-specific properties and T cells regulate the susceptibility to papilloma induction by Mus musculus papillomavirus 1. PLoS Pathog. 2014;10(8):e1004314. doi: 10.1371/journal.ppat.1004314 25121947

22. Wang J.W., Jiang R., Peng S., Chang Y.N., Hung C.F., Roden R.B. Immunologic Control of Mus musculus Papillomavirus Type 1. PLoS Pathog. 2015;11(10):e1005243. doi: 10.1371/journal.ppat.1005243 26495972

23. Spurgeon M.E., Uberoi A., McGregor S.M., Wei T., Ward-Shaw E., Lambert P.F. A novel in vivo infection model to study papillomavirus-mediated disease of the female reproductive tract. mBio. 2019.

24. Cladel N.M., Budgeon L.R., Balogh K.K., Cooper T.K., Brendle S.A., Christensen N.D., Schell T.D., Hu J. Mouse papillomavirus infection persists in mucosal tissues of an immunocompetant mouse strain and progress to cancer. Sci Rep. 2017;7(1):16932. doi: 10.1038/s41598-017-17089-4 29208932

25. Cladel N.M., Budgeon L.R., Cooper T.K., Balogh K.K., Christensen N.D., Myers R., Majerciak V., Gotte D., Zheng Z.M., Hu J. Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy. J Gen Virol. 2017.

26. Paladini R.D., Takahashi K., Bravo N.S., Coulombe P.A. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. Journal of Cell Biology. 1996;132(3):381. doi: 10.1083/jcb.132.3.381 8636216

27. Hobbs R.P., Batazzi A.S., Han M.C., Coulombe P.A. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35(43):5653–62. doi: 10.1038/onc.2016.102 27065324

28. Zhussupbekova S., Sinha R., Kuo P., Lambert P.F., Frazer I.H., Tuong Z.K. A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury. EBioMedicine. 2016;9: 314–23. doi: 10.1016/j.ebiom.2016.06.011 27333029

29. McGowan K.M., Tong X., Colucci-Guyon E.x, Langa F., Babinet C., Coulombe P.A. Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev. 2002;16(11):1412–22. doi: 10.1101/gad.979502 12050118

30. DePianto D., Kerns M., Dlugosz A.A., Coulombe P.A. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nature Genetics. 2010;42:910–4. doi: 10.1038/ng.665 20871598

31. Tabas-Madrid D., Nogales-Cadenas R., Pascual-Montano A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Research. 2012: doi: 10.1093/nar/gks402 22573175

32. Nogales-Cadenas R., Carmona-Saez P., Vazquez M., Vicente C., Yang X., Tirado F., Carazo J.M., Pascual-Montano A. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research 2009: doi: 10.1093/nar/gkp416 19465387

33. Carmona-Saez P., Chagoyen M., Tirado F., Carazo J.M., Pascual-Montano A. GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists. Genome Biology. 2007;8(1):R3. doi: 10.1186/gb-2007-8-1-r3 17204154

34. Glaab E., Baudot A., Krasnogor N., Schneider R., Valencia A. EnrichNet: network-based gene set enrichment analysis. Bioinformatics. 2012;28(18):i451–i7. doi: 10.1093/bioinformatics/bts389 22962466

35. Narita T., Nitta T., Nitta S., Okamura T., Takayanagi H. Mice lacking all of the Skint family genes. Int Immunol. 2018;30(7):301–9. doi: 10.1093/intimm/dxy030 29718261

36. Barbee S.D., Woodward M.J., Turchinovich G., Mention J.J., Lewis J.M., Boyden L.M., Lifton R.P., Tigelaar R., Hayday A.C. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci U S A. 2011;108(8):3330–5. doi: 10.1073/pnas.1010890108 21300860

37. Thapa M., Welner R.S., Pelayo R., Carr D.J.J. CXCL9 and CXCL10 Expression Are Critical for Control of Genital Herpes Simplex Virus Type 2 Infection through Mobilization of HSV Specific CTL and NK Cells to the Nervous System. The Journal of Immunoogy. 2008.

38. Guirnalda P., Wood L., Goenka R., Crespo J., Paterson Y. Interferon γ-induced intratumoral expression of CXCL9 alters the local distribution of T cells following immunotherapy with Listeria monocytogenes. Oncoimmunology. 2013.

39. Wuesta T., Farberb J., Lusterc A., Carr D.J.J. CD4+ T Cell Migration into the Cornea is Reduced in CXCL9 Deficient but not CXCL10 Deficient Mice following Herpes Simplex Virus Type 1 Infection. Cell Immunol. 2006.

40. Dai Z., Xing L., Cerise J., Wang E.H.C., Jabbari A., Jong A.D., Petukhova L., Christiano A.M., Clynes R. CXCR3 Blockade Inhibits T-cell Migration into the Skin and Prevents Development of Alopecia Areata. Journal of Immunology. 2016.

41. Groom J.R., Richmond J., Murooka T.T., Sorensen E.W., Sung J.H., Bankert K., von Andrian U.H., Moon J.J., Mempel T.R., Luster A.D. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity. 2012;37(6):1091–103. doi: 10.1016/j.immuni.2012.08.016 23123063

42. Leiding J.W., Holland S.M. Warts and All: HPV in Primary Immunodeficiencies. J Allergy Clin Immunol. 2012;130(5):1030–48. doi: 10.1016/j.jaci.2012.07.049 23036745

43. Trimble C.L., Morrow M.P., Kraynyak K.A., Shen X., Dallas M., Yan J., Edwards L., Parker R.L., Denny L., Giffear M., Brown A.S., Marcozzi-Pierce K., Shah D., Slager A.M., Sylvester A.J., Khan A., Broderick K.E., Juba R.J., Herring T.A., Boyer J., Lee J., Sardesai N.Y., Weiner D.B., Bagarazzi M.L. Safety, efficacy, and immunogenicity of VGX-3100,a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–88. doi: 10.1016/S0140-6736(15)00239-1 26386540

44. Harper D.M., Nieminen P., Donders G., Einstein M.H., Garcia F., Huh W.K., Stoler M.H., Glavini K., Attley G., Limacher J., Bastien B., Calleja E. The efficacy and safety of Tipapkinogen Sovacivec therapeutic HPV vaccine in cervical intraepithelial neoplasia grades 2 and 3: Randomized controlled phase II trial with 2.5 years of follow-up. Gynecologic Oncology. 2019;153:521–9. doi: 10.1016/j.ygyno.2019.03.250 30955915

45. Basu P., Mehta A., Jain M., Gupta S., Nagarkar R.V., John S., Petit R. A Randomized Phase 2 Study of ADXS11-001 Listeria monocytogenes–Listeriolysin O Immunotherapy With or Without Cisplatin in Treatment of Advanced Cervical Cancer. Int J Gynecol Cancer. 2018;28(4):764–72. doi: 10.1097/IGC.0000000000001235 29538258

46. Escobar-Hoyos L.F., Yang J., Zhu J., Cavallo J.A., Zhai H., Burke S. KA, Chen E.I., Shroyer K.R. Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Mod Pathol. 2014;27(4):621–30. doi: 10.1038/modpathol.2013.166 24051697

47. Khanom R., Nguyen C.T.K., Kayamori K., Zhao X., Morita K., Miki Y. KK, Yamaguchi A., Sakamoto K. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLOS One. 2016;11(8).

48. Regenbogen E., Mo M., Romeiser J, Shroyer A.L.W., Escobar‐Hoyos L.F., Burke S., Shroyer K.R. Elevated expression of keratin 17 in oropharyngeal squamous cell carcinoma is associated with decreased survival. Head and Neck. 2018;40(8):1788–98. doi: 10.1002/hed.25164 29626364

49. Escobar-Hoyos L.F., Shah R., Roa-Peña L., Vanner E.A., Najafian N., Banach A., Nielsen E., Al-Khalil R., Akalin A., Talmage D., Shroyer K.R. Keratin-17 Promotes p27KIP1 Nuclear Export and Degradation and Offers Potential Prognostic Utility. Cancer Research. 2015;75(17):3650–62. doi: 10.1158/0008-5472.CAN-15-0293 26109559

50. Merkin R.D., Vanner E.A., Romeiser J.L., Shroyer A.L.W., Escobar-Hoyos L.F., Li J., Powers R.S., Burke S., Shroyer K.R. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor–negative/human epidermal growth factor receptor-2–negative breast cancer. Human Pathology. 2016;62:23–32. doi: 10.1016/j.humpath.2016.10.006 27816721

51. Chung B.M., Arutyunov A., Ilagan E., Yao N., Wills-Karp M., Coulombe P.A. Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. J Cell Biol. 2015;208:613–27. doi: 10.1083/jcb.201408026 25713416

52. Hobbs R.P., DePianto D.J., Jacob J.T., Han M.C., Chung B.M., Batazzi A.S., Poll B.J., Guo Y., Han J., Ong S., Zheng W., Taube J.M., Čiháková D., Wan F., Coulombe P.A. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nature Genetics. 2015;47:933–8. doi: 10.1038/ng.3355 26168014

53. Lang S., Bruderek K., Kaspar C., Höing B., Kanaan O., Dominas N., Hussain T., Droege F., Eyth C.P., Hadaschik B., Brandau S. Clinical relevance and suppressive capacity of human MDSC subsets. Clinical Cancer Research. 2018: doi: 10.1158/078-0432.CCR-17-3726

54. Ouzounova M., Lee E., Piranlioglu R., Andaloussi A.E., Kolhe R., Demirci M.F., Marasco D., Asm I., Chadli A., Hassan K.A., Thangaraju M., Zhou G., Arbab A.S., Cowell J.K., Korkaya H. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nature Communications. 2017;8(14979): doi: 10.1038/ncomms14979 28382931

55. Krapp C., Hotter D, Gawanbacht, McLaren P.J., Kluge S.F., Stürzel C.M., Mack K., Reith E., Engelhart S., Ciuffi A., Hornung V., Sauter D., Telenti A., Kirchhoff F. Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity. Cell Host Microbe. 2016;19(4):504–14. doi: 10.1016/j.chom.2016.02.019 26996307

56. Keyes B.E., Liu S., Asare A., Naik S., Levorse J., Polak L., Lu C.P., Nikolova M., Pasolli H.A., Fuchs E. Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin. Cell. 2016;167(5):1323–38. doi: 10.1016/j.cell.2016.10.052 27863246

57. McGowan K.M., Coulombe P.A. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol. 1998;143(2):469–86. doi: 10.1083/jcb.143.2.469 9786956

58. Hickman H.D., Reynoso G.V., Ngudiankama B.F., Cush S.S., Gibbs J. BJR, Yewdell J. W. CXCR3 Chemokine Receptor Enables Local CD8+ T Cell Migration for the Destruction of Virus-Infected Cells. Immunity. 2015;42(524–537). doi: 10.1016/j.immuni.2015.02.009 25769612

59. Cohen S.B., Maurer K.J., Egan C.E., Oghumu S., Satoskar A.R., Denkers E.Y. CXCR3-Dependent CD4+ T Cells Are Required to Activate Inflammatory Monocytes for Defense against Intestinal Infection. PLoS Pathog. 2013;9(10):e1003706. doi: 10.1371/journal.ppat.1003706 24130498

60. Kuo P., Tuong Z.K., MinTeoh S., Frazer I.H., Mattarollo S.R., Leggatt G.R. HPV16E7-Induced Hyperplasia Promotes CXCL9/10 Expression and Induces CXCR3+ T-Cell Migration to Skin. Journal of Investigative Dermatology. 2018;138(6):1348–59. doi: 10.1016/j.jid.2017.12.021 29277541

61. Mikucki M.E., Fisher D.T., Matsuzaki J., Skitzki J.J, Gaulin N.B, Muhitch J.B, Ku A.W, Frelinger J.G, Odunsi K, Gajewski T.F, Luster A.D, Evans S.S Non-redundant Requirement for CXCR3 Signaling during Tumoricidal T Cell Trafficking across Tumor Vascular Checkpoints. Nat Commun. 2015;6:7458. doi: 10.1038/ncomms8458 26109379

62. Menke J., Zeller G.C., Kikawada E., Means T.K., Huang X.R., Lan H.Y., Lu B., Farber J., Luster A.D., Kelley V.R. CXCL9, but not CXCL10, Promotes CXCR3-Dependent Immune-Mediated Kidney Disease. Journal of the American Society of Nephrology. 2008;19(6):1177–89. doi: 10.1681/ASN.2007111179 18337479

63. Metzemaekers M., Vanheule V., Janssens R., Struyf S., Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol. 2017;8:1970. doi: 10.3389/fimmu.2017.01970 29379506

64. Chaturvedi V., Ertelt J.M., Jiang T.T., Kinder J.M., Xin L., Owens K.J., Jones H.N., Way S.S. CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage. The Journal of Clinical Investigation. 2015;125(4):1713–25. doi: 10.1172/JCI78578 25751061

65. Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616 19910308

66. Li B., Dewey C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:12:323.

67. Afgan E., Baker D., Batut B., Van den Beek M., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Grüning B.A., Guerler A., Hillman-Jackson J., Hiltemann S., Jalili V., Rasche H., Soranzo N., Goecks J., Taylor J., Nekrutenko A., Blankenberg D. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–W44. doi: 10.1093/nar/gky379 29790989


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#