G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae
Autoři:
Min Qiu aff001; Yaning Li aff001; Xin Zhang aff001; Mingrun Xuan aff001; Baiyu Zhang aff001; Wenwu Ye aff001; Xiaobo Zheng aff001; Francine Govers aff003; Yuanchao Wang aff001
Působiště autorů:
Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
aff001; The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
aff002; Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
aff003
Vyšlo v časopise:
G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae. PLoS Pathog 16(1): e32767. doi:10.1371/journal.ppat.1008138
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008138
Souhrn
Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, β, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.
Klíčová slova:
G-protein signaling – Gene expression – Hypocotyl – Mycelium – Phytophthora – Plant pathogens – Protein kinases – Soybean
Zdroje
1. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. 2006;313(5791):1261–6. Epub 2006/09/02. doi: 10.1126/science.1128796 16946064.
2. Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML. Phylogenetic-Relationships between Chlorophytes, Chrysophytes, and Oomycetes. Proceedings of the National Academy of Sciences of the United States of America. 1987;84(16):5823–7. doi: 10.1073/pnas.84.16.5823 ISI:A1987J650800064. 3475703
3. Wrather JA, Koenning SR. Estimates of disease effects on soybean yields in the United States 2003 to 2005. Journal of nematology. 2006;38(2):173–80. Epub 2006/06/01. 19259444; PubMed Central PMCID: PMC2586459.
4. Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Molecular plant pathology. 2007;8(1):1–8. Epub 2007/01/01. doi: 10.1111/j.1364-3703.2006.00373.x 20507474.
5. Ye W, Wang X, Tao K, Lu Y, Dai T, Dong S, et al. Digital gene expression profiling of the Phytophthora sojae transcriptome. Molecular plant-microbe interactions: MPMI. 2011;24(12):1530–9. Epub 2011/08/19. doi: 10.1094/MPMI-05-11-0106 21848399.
6. Fang Y, Tyler BM. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Molecular plant pathology. 2016;17(1):127–39. Epub 2015/10/29. doi: 10.1111/mpp.12318 26507366.
7. Fang Y, Cui L, Gu B, Arredondo F, Tyler BM. Efficient Genome Editing in the Oomycete Phytophthora sojae Using CRISPR/Cas9. Current protocols in microbiology. 2017;44:21A 1 1-A 1 6. Epub 2017/02/07. doi: 10.1002/cpmc.25 28166383.
8. Li L, Wright SJ, Krystofova S, Park G, Borkovich KA. Heterotrimeric G protein signaling in filamentous fungi. Annual review of microbiology. 2007;61:423–52. Epub 2007/05/18. doi: 10.1146/annurev.micro.61.080706.093432 17506673.
9. Stateczny D, Oppenheimer J, Bommert P. G protein signaling in plants: minus times minus equals plus. Current opinion in plant biology. 2016;34:127–35. Epub 2016/11/23. doi: 10.1016/j.pbi.2016.11.001 27875794.
10. Dupre DJ, Robitaille M, Rebois RV, Hebert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annual review of pharmacology and toxicology. 2009;49:31–56. Epub 2008/10/07. doi: 10.1146/annurev-pharmtox-061008-103038 18834311; PubMed Central PMCID: PMC2659589.
11. Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes & development. 1997;11(23):3206–17. Epub 1998/02/12. doi: 10.1101/gad.11.23.3206 9389652; PubMed Central PMCID: PMC316752.
12. Li L, Borkovich KA. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryotic cell. 2006;5(8):1287–300. Epub 2006/08/10. doi: 10.1128/EC.00109-06 16896213; PubMed Central PMCID: PMC1539153.
13. Ma H, Yanofsky MF, Meyerowitz EM. Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(10):3821–5. Epub 1990/05/01. doi: 10.1073/pnas.87.10.3821 2111018; PubMed Central PMCID: PMC53995.
14. Mason MG, Botella JR. Isolation of a novel G-protein gamma-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochimica et biophysica acta. 2001;1520(2):147–53. Epub 2001/08/22. doi: 10.1016/s0167-4781(01)00262-7 11513956.
15. Trusov Y, Chakravorty D, Botella JR. Diversity of heterotrimeric G-protein gamma subunits in plants. BMC research notes. 2012;5:608. Epub 2012/11/02. doi: 10.1186/1756-0500-5-608 23113884; PubMed Central PMCID: PMC3508898.
16. Jones JC, Duffy JW, Machius M, Temple BRS, Dohlman HG, Jones AM. The Crystal Structure of a Self-Activating G Protein alpha Subunit Reveals Its Distinct Mechanism of Signal Initiation. Sci Signal. 2011;4(159). ARTN ra810.1126/scisignal. doi: 10.1016/0006-3223(91)90210-d. ISI:000287079000003.
17. Urano D, Jones JC, Wang H, Matthews M, Bradford W, Bennetzen JL, et al. G protein activation without a GEF in the plant kingdom. PLoS genetics. 2012;8(6):e1002756. Epub 2012/07/05. doi: 10.1371/journal.pgen.1002756 22761582; PubMed Central PMCID: PMC3386157.
18. Urano D, Jones AM. Heterotrimeric G protein-coupled signaling in plants. Annual review of plant biology. 2014;65:365–84. Epub 2013/12/10. doi: 10.1146/annurev-arplant-050213-040133 24313842; PubMed Central PMCID: PMC4861148.
19. Botto JF, Ibarra S, Jones AM. The Heterotrimeric G-protein Complex Modulates Light Sensitivity in Arabidopsis thaliana Seed Germination. Photochem Photobiol. 2009;85(4):949–54. doi: 10.1111/j.1751-1097.2008.00505.x ISI:000267284300014. 19192205
20. Booker KS, Schwarz J, Garrett MB, Jones AM. Glucose Attenuation of Auxin-Mediated Bimodality in Lateral Root Formation Is Partly Coupled by the Heterotrimeric G Protein Complex. PloS one. 2010;5(9). ARTN e1283310.1371/journal.pone.0012833. ISI:000281960800023.
21. Fox AR, Soto GC, Jones AM, Casal JJ, Muschietti JP, Mazzella MA. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant molecular biology. 2012;80(3):315–24. Epub 2012/08/03. doi: 10.1007/s11103-012-9950-x 22855128; PubMed Central PMCID: PMC4871592.
22. Pandey S, Chen JG, Jones AM, Assmann SM. G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant physiology. 2006;141(1):243–56. Epub 2006/04/04. doi: 10.1104/pp.106.079038 16581874; PubMed Central PMCID: PMC1459317.
23. van den Hoogen J, Verbeek-de Kruif N, Govers F. The G-protein gamma subunit of Phytophthora infestans is involved in sporangial development. Fungal genetics and biology: FG & B. 2018;116:73–82. Epub 2018/04/29. doi: 10.1016/j.fgb.2018.04.012 29704555.
24. Laxalt AM, Latijnhouwers M, van Hulten M, Govers F. Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal genetics and biology: FG & B. 2002;36(2):137–46. Epub 2002/06/26. doi: 10.1016/S1087-1845(02)00012-9 12081467.
25. Latijnhouwers M, Govers F. A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryotic cell. 2003;2(5):971–7. Epub 2003/10/14. doi: 10.1128/EC.2.5.971-977.2003 14555479; PubMed Central PMCID: PMC219352.
26. Latijnhouwers M, Ligterink W, Vleeshouwers VG, van West P, Govers F. A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Molecular microbiology. 2004;51(4):925–36. Epub 2004/02/07. doi: 10.1046/j.1365-2958.2003.03893.x 14763970.
27. Hua C, Wang Y, Zheng X, Dou D, Zhang Z, Govers F. A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryotic cell. 2008;7(12):2133–40. Epub 2008/10/22. doi: 10.1128/EC.00286-08 18931042; PubMed Central PMCID: PMC2593195.
28. Zhang X, Zhai C, Hua C, Qiu M, Hao Y, Nie P, et al. PsHint1, associated with the G-protein alpha subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae. Molecular plant pathology. 2016;17(2):272–85. Epub 2015/05/16. doi: 10.1111/mpp.12279 25976113.
29. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochimica et biophysica acta. 2013;1834(7):1302–21. Epub 2013/03/26. doi: 10.1016/j.bbapap.2013.03.010 23524293.
30. Roelants FM, Leskoske KL, Pedersen RT, Muir A, Liu JM, Finnigan GC, et al. TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Molecular and cellular biology. 2017;37(7). Epub 2017/01/11. doi: 10.1128/MCB.00627-16 28069741; PubMed Central PMCID: PMC5359421.
31. Gelperin D, Horton L, DeChant A, Hensold J, Lemmon SK. Loss of ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast. Genetics. 2002;161(4):1453–64. Epub 2002/08/28. 12196392; PubMed Central PMCID: PMC1462197.
32. Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife. 2014;3. Epub 2014/10/04. doi: 10.7554/eLife.03779 25279700; PubMed Central PMCID: PMC4217029.
33. Zhang M, Lu J, Tao K, Ye W, Li A, Liu X, et al. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development. PloS one. 2012;7(6):e40246. Epub 2012/07/07. doi: 10.1371/journal.pone.0040246 22768262; PubMed Central PMCID: PMC3386981.
34. Xiang Q, Judelson HS. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans. PloS one. 2014;9(4):e92086. Epub 2014/04/08. doi: 10.1371/journal.pone.0092086 PubMed Central PMCID: PMC3976263. 24704821
35. Zhao W, Yang X, Dong S, Sheng Y, Wang Y, Zheng X. Transient silencing mediated by in vitro synthesized double-stranded RNA indicates that PsCdc14 is required for sporangial development in a soybean root rot pathogen. Science China Life sciences. 2011;54(12):1143–50. Epub 2012/01/10. doi: 10.1007/s11427-011-4250-2 22227907.
36. Ah Fong AM, Judelson HS. Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Molecular microbiology. 2003;50(2):487–94. Epub 2003/11/18. doi: 10.1046/j.1365-2958.2003.03735.x 14617173.
37. Metodiev MV, Matheos D, Rose MD, Stone DE. Regulation of MAPK function by direct interaction with the mating-specific Galpha in yeast. Science. 2002;296(5572):1483–6. Epub 2002/05/25. doi: 10.1126/science.1070540 12029138.
38. Clement ST, Dixit G, Dohlman HG. Regulation of yeast G protein signaling by the kinases that activate the AMPK homolog Snf1. Sci Signal. 2013;6(291):ra78. Epub 2013/09/05. doi: 10.1126/scisignal.2004143 24003255; PubMed Central PMCID: PMC4108480.
39. Liebmann B, Gattung S, Jahn B, Brakhage AA. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Molecular Genetics and Genomics. 2003;269(3):420–35. doi: 10.1007/s00438-003-0852-0 ISI:000184016600014. 12734751
40. Mah JH, Yu JH. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic cell. 2006;5(10):1585–95. Epub 2006/10/13. doi: 10.1128/EC.00192-06 17030990; PubMed Central PMCID: PMC1595350.
41. Zhao J, Wang X. Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. The Journal of biological chemistry. 2004;279(3):1794–800. Epub 2003/11/05. doi: 10.1074/jbc.M309529200 14594812.
42. Choudhury SR, Pandey S. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean. The Plant cell. 2015;27(11):3260–76. Epub 2015/10/27. doi: 10.1105/tpc.15.00517 26498905; PubMed Central PMCID: PMC4682299.
43. Chen P, Lee KS, Levin DE. A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae. Molecular & general genetics: MGG. 1993;236(2–3):443–7. Epub 1993/01/01. doi: 10.1007/bf00277146 8437590.
44. Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. Eukaryotic cell. 2007;6(4):571–83. Epub 2007/03/06. doi: 10.1128/EC.00026-07 17337635; PubMed Central PMCID: PMC1865659.
45. Roelants FM, Torrance PD, Bezman N, Thorner J. Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Molecular biology of the cell. 2002;13(9):3005–28. Epub 2002/09/11. doi: 10.1091/mbc.E02-04-0201 12221112; PubMed Central PMCID: PMC124139.
46. Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(48):19222–7. Epub 2011/11/15. doi: 10.1073/pnas.1116948108 22080611; PubMed Central PMCID: PMC3228448.
47. Kim KS, Judelson HS. Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryotic cell. 2003;2(6):1376–85. Epub 2003/12/11. doi: 10.1128/EC.2.6.1376-1385.2003 14665470; PubMed Central PMCID: PMC326645.
48. Kliegman JI, Fiedler D, Ryan CJ, Xu YF, Su XY, Thomas D, et al. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell reports. 2013;5(6):1725–36. Epub 2013/12/24. doi: 10.1016/j.celrep.2013.11.040 PubMed Central PMCID: PMC4007695. 24360963
49. Yang X, Zhao W, Hua C, Zheng X, Jing M, Li D, et al. Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain. Molecular microbiology. 2013;88(2):382–94. Epub 2013/03/02. doi: 10.1111/mmi.12191 23448757.
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 1
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Berberin: přírodní hypolipidemikum se slibnými výsledky
- „Pekelný kamínek“ s léčivými účinky: Jak se dusičnan stříbrný používá dnes?
Nejčtenější v tomto čísle
- Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells
- Broad dengue neutralization in mosquitoes expressing an engineered antibody
- Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly
- Correction: Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses