#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host


Autoři: Ellango Ramasamy aff001;  Vikas Taank aff001;  John F Anderson aff002;  Hameeda Sultana aff001;  Girish Neelakanta aff001
Působiště autorů: Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America aff001;  Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America aff002;  Center for Molecular Medicine, Old Dominion University, Norfolk, Virginia, United States of America aff003
Vyšlo v časopise: Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host. PLoS Genet 16(7): e1008856. doi:10.1371/journal.pgen.1008856
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008856

Souhrn

The microRNAs (miRNAs) are important regulators of gene expression. In this study, we provide evidence for the first time to show that rickettsial pathogen Anaplasma phagocytophilum infection results in the down-regulation of tick microRNA-133 (miR-133), to induce Ixodes scapularis organic anion transporting polypeptide (isoatp4056) gene expression critical for this bacterial survival in the vector and for its transmission to the vertebrate host. Transfection studies with recombinant constructs containing transcriptional fusions confirmed binding of miR-133 to isoatp4056 mRNA. Treatment with miR-133 inhibitor resulted in increased bacterial burden and isoatp4056 expression in ticks and tick cells. In contrast, treatment with miR-133 mimic or pre-mir-133 resulted in dramatic reduction in isoatp4056 expression and bacterial burden in ticks and tick cells. Moreover, treatment of ticks with pre-mir-133 affected vector-mediated A. phagocytophilum infection of murine host. These results provide novel insights to understand impact of modulation of tick miRNAs on pathogen colonization in the vector and their transmission to infect the vertebrate host.

Klíčová slova:

Bacterial pathogens – Gene expression – MicroRNAs – Nymphs – Pathogens – Ribosomal RNA – Ticks – Vertebrates


Zdroje

1. Anderson JF, Armstrong PM. Prevalence and genetic characterization of Powassan virus strains infecting Ixodes scapularis in Connecticut. The American Journal of Tropical Medicine and Hygiene. 2012;87(4):754–9. doi: 10.4269/ajtmh.2012.12-0294 22890037

2. Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin North Am. 2008;22(2):195–215, v. doi: 10.1016/j.idc.2007.12.006 18452797

3. Krause PJ, Narasimhan S, Wormser GP, Barbour AG, Platonov AE, Brancato J, et al. Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerging Infectious Diseases. 2014;20(7):1183–90. doi: 10.3201/eid2007.131587 24960072

4. Pritt BS, Sloan LM, Johnson DK, Munderloh UG, Paskewitz SM, McElroy KM, et al. Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. The New England Journal of Medicine. 2011;365(5):422–9. doi: 10.1056/NEJMoa1010493 21812671

5. Pritt BS, Allerdice MEJ, Sloan LM, Paddock CD, Munderloh UG, Rikihisa Y, et al. Proposal to reclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. and description of Ehrlichia muris subsp. eauclairensis subsp. nov., a newly recognized tick-borne pathogen of humans. Int J Syst Evol Microbiol. 2017;67(7):2121–6. doi: 10.1099/ijsem.0.001896 28699575

6. Gray EB, Herwaldt BL. Babesiosis Surveillance—United States, 2011–2015. MMWR Surveill Summ. 2019;68(6):1–11. doi: 10.15585/mmwr.ss6806a1 31145719

7. Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ. Surveillance for Lyme Disease—United States, 2008–2015. MMWR Surveill Summ. 2017;66(22):1–12. doi: 10.15585/mmwr.ss6622a1 29120995

8. Curren EJ, Lehman J, Kolsin J, Walker WL, Martin SW, Staples JE, et al. West Nile Virus and Other Nationally Notifiable Arboviral Diseases—United States, 2017. MMWR Morbidity and Mortality Weekly Report. 2018;67(41):1137–42. doi: 10.15585/mmwr.mm6741a1 30335737

9. Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin North Am. 2015;29(2):341–55. doi: 10.1016/j.idc.2015.02.007 25999228

10. Biggs HM, Behravesh CB, Bradley KK, Dahlgren FS, Drexler NA, Dumler JS, et al. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis—United States. MMWR Recommendations and reports: Morbidity and Mortality Weekly Report Recommendations and Reports. 2016;65(2):1–44. doi: 10.15585/mmwr.rr6502a1 27172113

11. Wroblewski D, Gebhardt L, Prusinski MA, Meehan LJ, Halse TA, Musser KA. Detection of Borrelia miyamotoi and other tick-borne pathogens in human clinical specimens and Ixodes scapularis ticks in New York State, 2012–2015. Ticks and Tick-Borne Diseases. 2017;8(3):407–11. doi: 10.1016/j.ttbdis.2017.01.004 28131594

12. Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infection and Immunity. 2004;72(8):4772–83. doi: 10.1128/IAI.72.8.4772-4783.2004 15271939

13. Carlyon JA, Fikrig E. Mechanisms of evasion of neutrophil killing by Anaplasma phagocytophilum. Current Opinion in Hematology. 2006;13(1):28–33. doi: 10.1097/01.moh.0000190109.00532.56 16319684

14. Khanal S, Sultana H, Catravas JD, Carlyon JA, Neelakanta G. Anaplasma phagocytophilum infection modulates expression of megakaryocyte cell cycle genes through phosphatidylinositol-3-kinase signaling. PloS One. 2017;12(8):e0182898. doi: 10.1371/journal.pone.0182898 28797056

15. Rikihisa Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nature Reviews Microbiology. 2010;8(5):328–39. doi: 10.1038/nrmicro2318 20372158

16. Rikihisa Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clinical Microbiology Reviews. 2011;24(3):469–89. doi: 10.1128/CMR.00064-10 21734244

17. Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiology Reviews. 2015;39(1):47–80. doi: 10.1111/1574-6976.12084 25168200

18. Alberdi P, Mansfield KL, Manzano-Roman R, Cook C, Ayllon N, Villar M, et al. Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines. Frontiers in Cellular and Infection Microbiology. 2016;6:20. doi: 10.3389/fcimb.2016.00020 26904518

19. Artigas-Jeronimo S, Estrada-Pena A, Cabezas-Cruz A, Alberdi P, Villar M, de la Fuente J. Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Frontiers in Physiology. 2019;10:462. doi: 10.3389/fphys.2019.00462 31057429

20. Ayllon N, Villar M, Galindo RC, Kocan KM, Sima R, Lopez JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genetics. 2015;11(3):e1005120. doi: 10.1371/journal.pgen.1005120 25815810

21. Cabezas-Cruz A, Alberdi P, Ayllon N, Valdes JJ, Pierce R, Villar M, et al. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11(4):303–19. doi: 10.1080/15592294.2016.1163460 27019326

22. de la Fuente J, Estrada-Pena A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum Uses Common Strategies for Infection of Ticks and Vertebrate Hosts. Trends in Microbiology. 2016;24(3):173–80. doi: 10.1016/j.tim.2015.12.001 26718986

23. Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold. Scientific Reports. 2018;8(1):11409. doi: 10.1038/s41598-018-29654-6 30061607

24. Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. The Journal of Clinical Investigation. 2010;120(9):3179–90. doi: 10.1172/JCI42868 20739755

25. Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, et al. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. The Journal of Experimental Medicine. 2010;207(8):1727–43. doi: 10.1084/jem.20100276 20660616

26. Taank V, Dutta S, Dasgupta A, Steeves TK, Fish D, Anderson JF, et al. Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and tryptophan pathway for its survival in ticks. Scientific Reports. 2017;7(1):13256. doi: 10.1038/s41598-017-13559-x 29038575

27. Turck JW, Taank V, Neelakanta G, Sultana H. Ixodes scapularis Src tyrosine kinase facilitates Anaplasma phagocytophilum survival in its arthropod vector. Ticks and Tick-Borne Diseases. 2019;10(4):838–47. doi: 10.1016/j.ttbdis.2019.04.002 31000483

28. Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, et al. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasites & Vectors. 2018;11(1):593.

29. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Archiv: European Journal of Physiology. 2004;447(5):653–65. doi: 10.1007/s00424-003-1168-y 14579113

30. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. British Journal of Pharmacology. 2009;158(3):693–705. doi: 10.1111/j.1476-5381.2009.00430.x 19785645

31. Stieger B, Hagenbuch B. Organic anion-transporting polypeptides. Current Topics in Membranes. 2014;73:205–32. doi: 10.1016/B978-0-12-800223-0.00005-0 24745984

32. Radulovic Z, Porter LM, Kim TK, Mulenga A. Comparative bioinformatics, temporal and spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides. Ticks and Tick-borne Diseases. 2014;5(3):287–98. doi: 10.1016/j.ttbdis.2013.12.002 24582512

33. Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics. 2008;9:552. doi: 10.1186/1471-2164-9-552 19021911

34. Villar M, Ayllon N, Alberdi P, Moreno A, Moreno M, Tobes R, et al. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells. Molecular & Cellular Proteomics: MCP. 2015;14(12):3154–72.

35. Antunes S, Couto J, Ferrolho J, Sanches GS, Merino Charrez JO, De la Cruz Hernandez N, et al. Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Frontiers in Physiology. 2019;10:318. doi: 10.3389/fphys.2019.00318 31001128

36. Popara M, Villar M, de la Fuente J. Proteomics characterization of tick-host-pathogen interactions. Methods Mol Biol. 2015;1247:513–27. doi: 10.1007/978-1-4939-2004-4_34 25399117

37. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. 14744438

38. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301(5631):336–8. doi: 10.1126/science.1085242 12869753

39. Lai EC. Two decades of miRNA biology: lessons and challenges. RNA. 2015;21(4):675–7. doi: 10.1261/rna.051193.115 25780186

40. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi: 10.1016/j.cell.2009.01.002 19167326

41. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Research. 2008;36(Database issue):D154–8. doi: 10.1093/nar/gkm952 17991681

42. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Research. 2019;47(7):3353–64. doi: 10.1093/nar/gkz097 30820533

43. Liu Q, Tuo W, Gao H, Zhu XQ. MicroRNAs of parasites: current status and future perspectives. Parasitology Research. 2010;107(3):501–7. doi: 10.1007/s00436-010-1927-6 20532562

44. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology. 2018;9:402. doi: 10.3389/fendo.2018.00402 30123182

45. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal. 2004;23(20):4051–60. doi: 10.1038/sj.emboj.7600385 15372072

46. Ellango R, Asokan R, Ramamurthy VV. Insilco Prediction and Characterization of microRNAs from Oncopeltus fasciatus (Hemiptera: Lygaeidae) Genome. Applied Biochemistry and Biotechnology. 2016;179(8):1393–403. doi: 10.1007/s12010-016-2072-1 27075458

47. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9. doi: 10.1038/nature01957 14508493

48. Hussain M, Frentiu FD, Moreira LA, O'Neill SL, Asgari S. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(22):9250–5. doi: 10.1073/pnas.1105469108 21576469

49. Ma F, Liu X, Li D, Wang P, Li N, Lu L, et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 2010;184(11):6053–9. doi: 10.4049/jimmunol.0902308 20410487

50. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry. 2010;79:351–79. doi: 10.1146/annurev-biochem-060308-103103 20533884

51. Hussain M, Taft RJ, Asgari S. An insect virus-encoded microRNA regulates viral replication. Journal of Virology. 2008;82(18):9164–70. doi: 10.1128/JVI.01109-08 18614632

52. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. The EMBO Journal. 2008;27(24):3300–10. 19020517

53. Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, et al. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. Genome Research. 2009;19(7):1175–83. doi: 10.1101/gr.089367.108 19336450

54. Hackenberg M, Langenberger D, Schwarz A, Erhart J, Kotsyfakis M. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. RNA. 2017;23(8):1259–69. doi: 10.1261/rna.061168.117 28473453

55. Zhou J, Zhou Y, Cao J, Zhang H, Yu Y. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding. Experimental & Applied Acarology. 2013;59(3):339–49.

56. Luo J, Liu GY, Chen Z, Ren QY, Yin H, Luo JX, et al. Identification and characterization of microRNAs by deep-sequencing in Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks. Gene. 2015;564(2):125–33. doi: 10.1016/j.gene.2015.01.019 25592818

57. Wang F, Gong H, Zhang H, Zhou Y, Cao J, Zhou J. Lipopolysaccharide-Induced Differential Expression of miRNAs in Male and Female Rhipicephalus haemaphysaloides Ticks. PloS One. 2015;10(10):e0139241. doi: 10.1371/journal.pone.0139241 26430879

58. Barrero RA, Keeble-Gagnere G, Zhang B, Moolhuijzen P, Ikeo K, Tateno Y, et al. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus. BMC Genomics. 2011;12:328. doi: 10.1186/1471-2164-12-328 21699734

59. Shao CC, Xu MJ, Chen YZ, Tao JP, Zhu XQ. Comparative Profiling of MicroRNAs in Male and Female Rhipicephalus sanguineus. Applied Biochemistry and Biotechnology. 2015;176(7):1928–36. doi: 10.1007/s12010-015-1688-x 26054615

60. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nature Methods. 2014;11(8):809–15. doi: 10.1038/nmeth.3014 24973947

61. Schwarzenbach H, da Silva AM, Calin G, Pantel K. Data Normalization Strategies for MicroRNA Quantification. Clinical Chemistry. 2015;61(11):1333–42. doi: 10.1373/clinchem.2015.239459 26408530

62. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 2002;3(7):RESEARCH0034.

63. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci. 2007;32(4):189–97. doi: 10.1016/j.tibs.2007.02.006 17350266

64. Yang M, Wei Y, Jiang F, Wang Y, Guo X, He J, et al. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genetics. 2014;10(2):e1004206. doi: 10.1371/journal.pgen.1004206 24586212

65. Neelakanta G, Sultana H. Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases. Archivum Immunologiae et Therapiae experimentalis. 2015;63(3):169–79. doi: 10.1007/s00005-014-0324-8 25503555

66. Kurscheid S, Lew-Tabor AE, Rodriguez Valle M, Bruyeres AG, Doogan VJ, Munderloh UG, et al. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Molecular Biology. 2009;10:26. doi: 10.1186/1471-2199-10-26 19323841


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 7
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#