Not too long, not too short: Goldilocks principle of eye size
Autoři:
Rachel W. Kuchtey aff001
Působiště autorů:
Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
aff001; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
aff002
Vyšlo v časopise:
Not too long, not too short: Goldilocks principle of eye size. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008914
Kategorie:
Perspective
doi:
https://doi.org/10.1371/journal.pgen.1008914
Zdroje
1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017 Dec;5(12):e1221–34. doi: 10.1016/S2214-109X(17)30393-5 29032195
2. Carricondo PC, Andrade T, Prasov L, Ayres BM, Moroi SE. Nanophthalmos: A Review of the Clinical Spectrum and Genetics. J Ophthalmol. 2018;2018:2735465. doi: 10.1155/2018/2735465 29862063
3. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, et al. Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia. G Gibson, editor. PLoS Genet. 2013 Feb 28;9(2):e1003299. doi: 10.1371/journal.pgen.1003299 23468642
4. The CREAM Consortium, 23andMe Research Team, UK Biobank Eye and Vision Consortium, Tedja MS, Wojciechowski R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet. 2018 Jun;50(6):834–48. doi: 10.1038/s41588-018-0127-7 29808027
5. Awadalla MS, Burdon KP, Souzeau E, Landers J, Hewitt AW, Sharma S, et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmol. 2014 Aug;132(8):970–7. doi: 10.1001/jamaophthalmol.2014.946 24852644
6. Khorram D, Choi M, Roos BR, Stone EM, Kopel T, Allen R, et al. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos. Mol Vis. 2015;21:1017–23. 26392740
7. Sun W, Zhang Q. Does the association between TMEM98 and nanophthalmos require further confirmation? JAMA Ophthalmol. 2015 Mar;133(3):358–9. doi: 10.1001/jamaophthalmol.2014.4915 25429522
8. Othman MI, Sullivan SA, Skuta GL, Cockrell DA, Stringham HM, Downs CA, et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet. 1998 Nov;63(5):1411–8. doi: 10.1086/302113 9792868
9. Garnai SJ, Brinkmeier ML, Emery B, Aleman TS, Pyle LC, Veleva-Rotse B, et al. Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice. MG Anderson, editor. PLOS Genet. 2019 May 2;15(5):e1008130. doi: 10.1371/journal.pgen.1008130 31048900
10. Rossetti LZ, Glinton K, Yuan B, Liu P, Pillai N, Mizerik E, et al. Review of the phenotypic spectrum associated with haploinsufficiency of MYRF. Am J Med Genet A. 2019;179(7):1376–82. doi: 10.1002/ajmg.a.61182 31069960
11. Sundin OH. The mouse’s eye and Mfrp: not quite human. Ophthalmic Genet. 2005 Dec;26(4):153–5. doi: 10.1080/13816810500374359 16352474
12. Zenteno JC, Buentello-Volante B, Ayala-Ramirez R, Villanueva-Mendoza C. Homozygosity mapping identifies the Crumbs homologue 1 (Crb1) gene as responsible for a recessive syndrome of retinitis pigmentosa and nanophthalmos. Am J Med Genet A. 2011 May;155A(5):1001–6. doi: 10.1002/ajmg.a.33862 21484995
13. Yardley J, Leroy BP, Hart-Holden N, Lafaut BA, Loeys B, Messiaen LM, et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3683–9. doi: 10.1167/iovs.04-0550 15452077
14. Rymer J, Wildsoet CF. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review. Vis Neurosci. 2005 Jun;22(3):251–61. doi: 10.1017/S0952523805223015 16079001
15. Cross SH, Mckie L, Hurd TW, Riley S, Wills J, Barnard AR, et al. The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification. PLoS Genet. 2020 Apr 1;16(4):e1008583. doi: 10.1371/journal.pgen.1008583 32236127
16. Cross SH, Mckie L, Keighren M, West K, Thaung C, Davey T, et al. Missense Mutations in the Human Nanophthalmos Gene TMEM98 Cause Retinal Defects in the Mouse. Investig Opthalmology Vis Sci. 2019 Jul 2;60(8):2875.
17. Yamani A, Wood I, Sugino I, Wanner M, Zarbin MA. Abnormal collagen fibrils in nanophthalmos: a clinical and histologic study. Am J Ophthalmol. 1999 Jan;127(1):106–8. doi: 10.1016/s0002-9394(98)00302-x 9933017
18. Huang H, Teng P, Du J, Meng J, Hu X, Tang T, et al. Interactive Repression of MYRF Self-Cleavage and Activity in Oligodendrocyte Differentiation by TMEM98 Protein. J Neurosci Off J Soc Neurosci. 2018 14;38(46):9829–39.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 7
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
Nejčtenější v tomto čísle
- Holocentric chromosomes
- Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host
- A FAS solution to a DEAD case
- Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis