Advances and challenges in genetic technologies to produce single-sex litters
Autoři:
Charlotte Douglas aff001; James M. A. Turner aff001
Působiště autorů:
Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
aff001
Vyšlo v časopise:
Advances and challenges in genetic technologies to produce single-sex litters. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008898
Kategorie:
Review
doi:
https://doi.org/10.1371/journal.pgen.1008898
Souhrn
There is currently a requirement for single-sex litters for many applications, including agriculture, pest control, and reducing animal culling in line with the 3Rs principles: Reduction, Replacement, and Refinement. The advent of CRISPR/Cas9 genome editing presents a new opportunity with which to potentially generate all-female or all-male litters. We review some of the historical nongenetic strategies employed to generate single-sex litters and investigate how genetic and genome editing techniques are currently being used to produce all-male or all-female progeny. Lastly, we speculate on future technologies for generating single-sex litters and the possible associated challenges.
Klíčová slova:
Embryos – Genetic engineering – Genetic loci – Pest control – Sperm – X chromosomes – Y chromosomes – Y-linked traits
Zdroje
1. Home Office Statistics. Additional statistics on breeding and genotyping of animals for scientific procedures, Great Britain 2017 [Internet]. 2018 [cited 2020 Jun 26]. Home Office Statistical Bulletin 27;18. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/754408/breeding-genotyping-animals-scientific-procedures-2017-hosb2718.pdf
2. Russell WMS, Burch RL. The principles of humane experimental technique: London: Methuen & Co. Ltd.; 1959.
3. Krautwald-Junghanns ME, Cramer K, Fischer B, Forster A, Galli R, Kremer F, et al. Current approaches to avoid the culling of day-old male chicks in the layer industry, with special reference to spectroscopic methods. Poult Sci. 2018;97(3):749–57. doi: 10.3382/ps/pex389 29294120
4. Dearden PK, Gemmell NJ, Mercier OR, Lester PJ, Scott MJ, Newcomb RD, et al. The potential for the use of gene drives for pest control in New Zealand: a perspective. Journal of the Royal Society of New Zealand. 2018;48(4):225–44.
5. Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Marshall Graves JA, et al. Absence of Sry in species of the vole Ellobius. Nature Genetics. 1995;11(2):117–8. doi: 10.1038/ng1095-117 7550333
6. Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mammalian Genome. 1998;9(7):590–2. doi: 10.1007/s003359900823 9657859
7. Sutou S, Mitsui Y, Tsuchiya K. Sex determination without the Y Chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mammalian Genome. 2001;12(1):17–21. doi: 10.1007/s003350010228 11178738
8. Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet. 1959;1(7075):711–3. doi: 10.1016/s0140-6736(59)91893-8 13642858
9. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature. 1959;183(4657):302–3. doi: 10.1038/183302a0 13632697
10. Eicher EM, Washburn LL, Whitney JB, Morrow KE. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science. 1982;217(4559):535. doi: 10.1126/science.7089579 7089579
11. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, et al. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990;348(6300):448–50. doi: 10.1038/348448A0 2247149
12. Burgoyne PS, Buehr M, Koopman P, Rossant J, McLaren A. Cell-autonomous action of the testis-determining gene: Sertoli cells are exclusively XY in XX—XY chimaeric mouse testes. Development. 1988;102(2):443. 3166423
13. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–50. doi: 10.1038/346245a0 2374589
14. Kashimada K, Koopman P. Sry: the master switch in mammalian sex determination. Development. 2010;137(23):3921–30. doi: 10.1242/dev.048983 21062860
15. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351(6322):117–21. doi: 10.1038/351117a0 2030730
16. Koopman P, Munsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature. 1990;348(6300):450–2. doi: 10.1038/348450a0 2247150
17. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346(6281):240–4. doi: 10.1038/346240a0 1695712
18. Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, et al. Origins and functional evolution of Y chromosomes across mammals. Nature. 2014;508(7497):488–93. doi: 10.1038/nature13151 24759410
19. Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 2008;18(6):965–73. doi: 10.1101/gr.7101908 18463302
20. Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, et al. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature. 2009;461(7261):267–71. doi: 10.1038/nature08298 19710650
21. Capel B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nature Reviews Genetics. 2017;18(11):675–89. doi: 10.1038/nrg.2017.60 28804140
22. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. doi: 10.1126/science.1231143 23287718
23. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471. doi: 10.7554/eLife.00471 23386978
24. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. doi: 10.1126/science.1232033 23287722
25. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8. doi: 10.1016/j.cell.2013.04.025 23643243
26. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9. doi: 10.1016/j.cell.2013.08.022 23992847
27. Weissmann A, Reitemeier S, Hahn A, Gottschalk J, Einspanier A. Sexing domestic chicken before hatch: a new method for in ovo gender identification. Theriogenology. 2013;80(3):199–205. doi: 10.1016/j.theriogenology.2013.04.014 23726296
28. Rosenbruch M. [Early stages of the incubated chicken egg as a model in experimental biology and medicine]. ALTEX. 1994;11(4):199–206. 11178387
29. Rosenbruch M. [The sensitivity of chicken embryos in incubated eggs]. ALTEX. 1997;14(3):111–3. 11178496
30. Galli R, Preusse G, Schnabel C, Bartels T, Cramer K, Krautwald-Junghanns ME, et al. Sexing of chicken eggs by fluorescence and Raman spectroscopy through the shell membrane. PLoS ONE. 2018;13(2):e0192554. doi: 10.1371/journal.pone.0192554 29474445
31. Eftekhaari TE, Nejatizadeh AA, Rajaei M, Soleimanian S, Fallahi S, Ghaffarzadegan R, et al. Ethical considerations in sex selection. J Educ Health Promot. 2015;4:32. doi: 10.4103/2277-9531.157184 26097846
32. Pinkel D, Gledhill BL, Lake S, Stephenson D, Van Dilla MA. Sex preselection in mammals? Separation of sperm bearing Y and "O" chromosomes in the vole Microtus oregoni. Science. 1982;218(4575):904–6. doi: 10.1126/science.6753153 6753153
33. Johnson LA, Welch GR, Rens W. The Beltsville sperm sexing technology: high-speed sperm sorting gives improved sperm output for in vitro fertilization and AI. J Anim Sci. 1999;77 Suppl 2:213–20.
34. Dejarnette JM, Leach MA, Nebel RL, Marshall CE, McCleary CR, Moreno JF. Effects of sex-sorting and sperm dosage on conception rates of Holstein heifers: is comparable fertility of sex-sorted and conventional semen plausible? J Dairy Sci. 2011;94(7):3477–83. doi: 10.3168/jds.2011-4214 21700034
35. Frijters AC, Mullaart E, Roelofs RM, van Hoorne RP, Moreno JF, Moreno O, et al. What affects fertility of sexed bull semen more, low sperm dosage or the sorting process? Theriogenology. 2009;71(1):64–7. doi: 10.1016/j.theriogenology.2008.09.025 19004486
36. Garner DL. Hoechst 33342: the dye that enabled differentiation of living X-and Y-chromosome bearing mammalian sperm. Theriogenology. 2009;71(1):11–21. doi: 10.1016/j.theriogenology.2008.09.023 18952273
37. Seidel GE Jr., Overview of sexing sperm. Theriogenology. 2007;68(3):443–6. doi: 10.1016/j.theriogenology.2007.04.005 17512976
38. Maicas C, Holden SA, Drake E, Cromie AR, Lonergan P, Butler ST. Fertility of frozen sex-sorted sperm at 4 × 106 sperm per dose in lactating dairy cows in seasonal-calving pasture-based herds. Journal of Dairy Science. 2020;103(1):929–39. Epub 2019 Oct 23. doi: 10.3168/jds.2019-17131 31668438
39. Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD. Genetically haploid spermatids are phenotypically diploid. Nature. 1989;337(6205):373–6. doi: 10.1038/337373a0 2911388
40. Morales CR, Lefrancois S, Chennathukuzhi V, El-Alfy M, Wu X, Yang J, et al. A TB-RBP and Ter ATPase Complex Accompanies Specific mRNAs from Nuclei through the Nuclear Pores and into Intercellular Bridges in Mouse Male Germ Cells. Developmental Biology. 2002;246(2):480–94. doi: 10.1006/dbio.2002.0679 12051831
41. Ventelä S, Toppari J, Parvinen M. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell. 2003;14(7):2768–80. doi: 10.1091/mbc.e02-10-0647 12857863
42. Umehara T, Tsujita N, Shimada M. Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biol. 2019;17(8):e3000398. doi: 10.1371/journal.pbio.3000398 31408454
43. Chowdhury MMR, Lianguang X, Kong R, Park BY, Mesalam A, Joo MD, et al. In vitro production of sex preselected cattle embryos using a monoclonal antibody raised against bull sperm epitopes. Anim Reprod Sci. 2019;205:156–64. doi: 10.1016/j.anireprosci.2018.11.006 30472064
44. Tran H, Ferrell W, Butt T. An estrogen sensor for poultry sex sorting. Journal of animal science. 2010;88:1358–64. doi: 10.2527/jas.2009-2212 20081077
45. Yİlmaz-Dİkmen B, Dİkmen S. A morphometric method of sexing white layer eggs. Brazilian Journal of Poultry Science. 2013;15(3):203–10.
46. Webster B, Hayes W, Pike TW. Avian Egg Odour Encodes Information on Embryo Sex, Fertility and Development. PLoS ONE. 2015;10(1):e0116345. doi: 10.1371/journal.pone.0116345 25629413
47. Whittaker DJ, Soini HA, Gerlach NM, Posto AL, Novotny MV, Ketterson ED. Role of Testosterone in Stimulating Seasonal Changes in a Potential Avian Chemosignal. Journal of Chemical Ecology. 2011;37(12):1349–57. doi: 10.1007/s10886-011-0050-1 22173888
48. Galli R, Preusse G, Uckermann O, Bartels T, Krautwald-Junghanns M-E, Koch E, et al. In Ovo Sexing of Domestic Chicken Eggs by Raman Spectroscopy. Analytical Chemistry. 2016;88(17):8657–63. doi: 10.1021/acs.analchem.6b01868 27512829
49. Galli R, Preusse G, Uckermann O, Bartels T, Krautwald-Junghanns ME, Koch E, et al. In ovo sexing of chicken eggs by fluorescence spectroscopy. Anal Bioanal Chem. 2017;409(5):1185–94. doi: 10.1007/s00216-016-0116-6 27966169
50. Harz M, Krause M, Bartels T, Cramer K, Rösch P, Popp J. Minimal Invasive Gender Determination of Birds by Means of UV-Resonance Raman Spectroscopy. Analytical Chemistry. 2008;80(4):1080–6. doi: 10.1021/ac702043q 18197696
51. Göhler D, Fischer B, Meissner S. In-ovo sexing of 14-day-old chicken embryos by pattern analysis in hyperspectral images (VIS/NIR spectra): A non-destructive method for layer lines with gender-specific down feather color. Poultry Science. 2017;96(1):1–4. doi: 10.3382/ps/pew282 27591278
52. Pan L-q, Zhang W, Yu M, Sun Y, Gu X, Ma L, et al. Gender determination of early chicken hatching eggs embryos by hyperspectral imaging. 2016;32:181–6.
53. Steiner G, Bartels T, Stelling A, Krautwald-Junghanns M-E, Fuhrmann H, Sablinskas V, et al. Gender determination of fertilized unincubated chicken eggs by infrared spectroscopic imaging. Analytical and Bioanalytical Chemistry. 2011;400(9):2775–82. doi: 10.1007/s00216-011-4941-3 21479544
54. Clinton M, Nandi S, Zhao D, Olson S, Peterson P, Burdon T, et al. Real-Time Sexing of Chicken Embryos and Compatibility with in ovo Protocols. Sexual Development. 2016;10(4):210–6. doi: 10.1159/000448502 27559746
55. Johnson LA, Flook JP, Hawk HW. Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol Reprod. 1989;41(2):199–203. doi: 10.1095/biolreprod41.2.199 2804212
56. Seidel GE Jr. Sexing mammalian sperm—Where do we go from here? J Reprod Dev. 2012;58(5):505–9. doi: 10.1262/jrd.2012-077 23124700
57. Husna AU, Azam A, Qadeer S, Awan MA, Nasreen S, Shahzad Q, et al. Sperm preparation through Sephadex™ filtration improves in vitro fertilization rate of buffalo oocytes. Reproduction in Domestic Animals. 2018;53(2):377–84. doi: 10.1111/rda.13117 29239046
58. Ali JI, Eldridge FE, Koo GC, Schanbacher BD. Enrichment of Bovine X-and Y-Chromosome-Bearing Sperm with Monoclonal H-Y Antibody-Fluorescence-Activated Cell Sorter. Archives of Andrology. 1990;24(3):235–45. doi: 10.3109/01485019008987580 2353847
59. Bennett D, Boyse EA. Sex Ratio in Progeny of Mice Inseminated with Sperm treated with H-Y Antiserum. Nature. 1973;246(5431):308–9. doi: 10.1038/246308a0 4586316
60. Yadav SK, Gangwar DK, Singh J, Tikadar CK, Khanna VV, Saini S, et al. An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm. Vet World. 2017;10(5):498–504. doi: 10.14202/vetworld.2017.498-504 28620252
61. Kawarasaki T, Sone M, Yoshida M, Bamba K. Rapid and simultaneous detection of chromosome Y- and 1-bearing porcine spermatozoa by fluorescence in situ hybridization. Molecular Reproduction and Development. 1996;43(4):548–53. doi: 10.1002/(SICI)1098-2795(199604)43:4<548::AID-MRD18>3.0.CO;2-V 9052947
62. Kobayashi J, Kohsaka T, Sasada H, Umezu M, Sato E. Fluorescence in situ hybridization with y chromosome-specific probe in decondensed bovine spermatozoa. Theriogenology. 1999;52(6):1043–54. doi: 10.1016/S0093-691X(99)00193-4 10735111
63. Oi M, Yamada K, Hayakawa H, Suzuki H. Sexing of dog sperm by fluorescence in situ hybridization. The Journal of reproduction and development. 2013;59(1):92–6. doi: 10.1262/jrd.2012-098 23059640
64. Rens W, Yang F, Welch G, Revell S, O'Brien PC, Solanky N, et al. An X-Y paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures. Reproduction. 2001;121(4):541–6. 11277872
65. Whyte JJ, Roberts RM, Rosenfeld CS. Fluorescent in situ hybridization for sex chromosome determination before and after fertilization in mice. Theriogenology. 2007;67(5):1022–31. doi: 10.1016/j.theriogenology.2006.11.014 17215034
66. De Luca AC, Managó S, Ferrara MA, Rendina I, Sirleto L, Puglisi R, et al. Non-invasive sex assessment in bovine semen by Raman spectroscopy. Laser Physics Letters. 2014;11(5):055604.
67. Falchi L, Khalil WA, Hassan M, Marei WFA. Perspectives of nanotechnology in male fertility and sperm function. International Journal of Veterinary Science and Medicine. 2018;6(2):265–9. doi: 10.1016/j.ijvsm.2018.09.001 30564607
68. Hare WCD, Mitchell D, Betteridge KJ, Eaglesome MD, Randall GCB. Sexing two-week old bovine embryos by chromosomal analysis prior to surgical transfer: Preliminary methods and results. Theriogenology. 1976;5(5):243–53.
69. Tiffin GJ, Rieger D, Betteridge KJ, Yadav BR, King WA. Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J Reprod Fertil. 1991;93(1):125–32. doi: 10.1530/jrf.0.0930125 1920281
70. Edwards RG, Gardner RL. Sexing of Live Rabbit Blastocysts. Nature. 1967;214(5088):576–7. doi: 10.1038/214576a0 6036172
71. Cotinot C, Kirszenbaum M, Leonard M, Gianquinto L, Vaiman M. Isolation of bovine Y-derived sequence: Potential use in embryo sexing. Genomics. 1991;10(3):646–53. doi: 10.1016/0888-7543(91)90447-m 1679747
72. Anderson GB. Identification of embryonic sex by detection of H-Y antigen. Theriogenology. 1987;27(1):81–97.
73. Asadpour R, Asadi MH, Jafari-Joozani R, Hamidian GH. Ovine fetal sex determination using circulating cell-free fetal DNA (ccffDNA) and cervical mucous secretions. Asian Pacific Journal of Reproduction. 2015;4(1):65–9.
74. Focks DA. An Improved Separator for the Developmental Stages, Sexes, and Species of Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology. 1980;17(6):567–8. doi: 10.1093/jmedent/17.6.567 6111610
75. Zacarés M, Salvador-Herranz G, Almenar D, Tur C, Argilés R, Bourtzis K, et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites & Vectors. 2018;11(2):656.
76. Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, Alphey L, et al. Sex separation strategies: past experience and new approaches. Malaria Journal. 2009;8(2):S5.
77. Lowe REL, Fowler JEF, Bailey DL, Dame DA, Savage KE. SEPARATION OF SEXES OF ADULT ANOPHELES ALBIMANUS BY FEEDING OF INSECTICIDE-LADEN BLOOD. Mosquito News. 1981;41(4): 634–638.
78. Yamada H, Soliban SM, Vreysen MJ, Chadee DD, Gilles JRL. Eliminating female Anopheles arabiensis by spiking blood meals with toxicants as a sex separation method in the context of the sterile insect technique. Parasites & vectors. 2013;6:197.
79. Knipling EF. Possibilities of Insect Control or Eradication Through the Use of Sexually Sterile Males1. Journal of Economic Entomology. 1955;48(4):459–62.
80. Catteruccia F, Benton JP, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nature Biotechnology. 2005;23(11):1414–7. doi: 10.1038/nbt1152 16244659
81. Condon KC, Condon GC, Dafa’alla TH, Fu G, Phillips CE, Jin L, et al. Genetic sexing through the use of Y-linked transgenes. Insect Biochemistry and Molecular Biology. 2007;37(11):1168–76. doi: 10.1016/j.ibmb.2007.07.006 17916503
82. Thomas DD, Donnelly CA, Wood RJ, Alphey LS. Insect Population Control Using a Dominant, Repressible, Lethal Genetic System. Science. 2000;287(5462):2474. doi: 10.1126/science.287.5462.2474 10741964
83. Traut W, Sahara K, Marec F. Sex Chromosomes and Sex Determination in Lepidoptera. Sexual Development. 2007;1(6):332–46. doi: 10.1159/000111765 18391545
84. Tan A, Fu G, Jin L, Guo Q, Li Z, Niu B, et al. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(17):6766–70. doi: 10.1073/pnas.1221700110 23569267
85. Ant T, Koukidou M, Rempoulakis P, Gong H-F, Economopoulos A, Vontas J, et al. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biology. 2012;10(1):51.
86. Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, et al. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nature Biotechnology. 2005;23(4):453–6. doi: 10.1038/nbt1071 15750586
87. Kandul NP, Liu J, Hsu AD, Hay BA, Akbari OS. A novel drug-inducible sex-separation technique for insects. bioRxiv 875716 [Preprint]. 2019 [cited 2020 Apr 20]. Available from: https://www.biorxiv.org/content/10.1101/2019.12.13.875716v1
88. Doran TJ, Morris KR, Wise TG, O'Neil TE, Cooper CA, Jenkins KA, et al. Sex selection in layer chickens. Animal Production Science. 2018;58(3):476–80.
89. Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res. 2007;35(17):5922–33. doi: 10.1093/nar/gkm632 17726053
90. Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5:3977. doi: 10.1038/ncomms4977 24915045
91. Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003;270(1518):921–8. doi: 10.1098/rspb.2002.2319 12803906
92. Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008;4(12):e1000291. doi: 10.1371/journal.pgen.1000291 19057670
93. Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F, O'Loughlin SM, et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep. 2016;6:31139. doi: 10.1038/srep31139 27484623
94. Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nature Biotechnology. 2020. Epub 2020 May 11.
95. Fasulo B, Meccariello A, Morgan M, Borufka C, Papathanos PA, Windbichler N. A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet. 2020;16(3): e1008647. doi: 10.1371/journal.pgen.1008647 32168334
96. Cebrian-Serrano A, Zha S, Hanssen L, Biggs D, Preece C, Davies B. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models. PLoS ONE. 2017;12(1):e0169887. doi: 10.1371/journal.pone.0169887 28081254
97. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33(5):543–8. doi: 10.1038/nbt.3198 25803306
98. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–55. doi: 10.1016/j.cell.2014.09.014 25263330
99. Zhang Z, Niu B, Ji D, Li M, Li K, James AA, et al. Silkworm genetic sexing through W chromosome-linked, targeted gene integration. Proc Natl Acad Sci U S A. 2018;115(35):8752–6. doi: 10.1073/pnas.1810945115 30104361
100. Ohno S. Sex chromosomes and sex-linked genes. (Monographs on endocrinology, Vol. 1.): Berlin, Heidelberg, New York: Springer Verlag.; 1967.
101. Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, et al. The delayed rise of present-day mammals. Nature. 2007;446(7135):507–12. doi: 10.1038/nature05634 17392779
102. Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286(5441):964–7. doi: 10.1126/science.286.5441.964 10542153
103. Bachtrog D. Signs of genomic battles in mouse sex chromosomes. Cell. 2014;159(4):716–8. doi: 10.1016/j.cell.2014.10.036 25417148
104. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature. 2014;508(7497):494–9. doi: 10.1038/nature13206 24759411
105. Hughes JF, Page DC. The Biology and Evolution of Mammalian Y Chromosomes. Annual Review of Genetics. 2015;49(1):507–27.
106. Wang H, Hu YC, Markoulaki S, Welstead GG, Cheng AW, Shivalila CS, et al. TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol. 2013;31(6):530–2. doi: 10.1038/nbt.2595 23666012
107. Albrecht KH, Eicher EM. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol. 2001;240(1):92–107. doi: 10.1006/dbio.2001.0438 11784049
108. Greenfield A, Scott D, Pennisi D, Ehrmann I, Ellis P, Cooper L, et al. An H-YDb epitope is encoded by a novel mouse Y chromosome gene. Nat Genet. 1996;14(4):474–8. doi: 10.1038/ng1296-474 8944031
109. Ehrmann IE, Ellis PS, Mazeyrat S, Duthie S, Brockdorff N, Mattei MG, et al. Characterization of genes encoding translation initiation factor eIF-2gamma in mouse and human: sex chromosome localization, escape from X-inactivation and evolution. Hum Mol Genet. 1998;7(11):1725–37. doi: 10.1093/hmg/7.11.1725 9736774
110. Mazeyrat S, Saut N, Grigoriev V, Mahadevaiah SK, Ojarikre OA, Rattigan A, et al. A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nat Genet. 2001;29(1):49–53. doi: 10.1038/ng717 11528390
111. Agulnik AI, Mitchell MJ, Lerner JL, Woods DR, Bishop CE. A mouse Y chromosome gene encoded by a region essential for spermatogenesis and expression of male-specific minor histocompatibility antigens. Hum Mol Genet. 1994;3(6):873–8. doi: 10.1093/hmg/3.6.873 7524912
112. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 2012;8(9):e1002964. doi: 10.1371/journal.pgen.1002964 23028370
113. Zhao X, Wei W, Pan H, Nie J, Chen D, Zhang P, et al. Identification of the Sex of Pre-implantation Mouse Embryos Using a Marked Y Chromosome and CRISPR/Cas9. Scientific Reports. 2019;9(1):14315. doi: 10.1038/s41598-019-50731-x 31586114
114. Yosef I, Edry-Botzer L, Globus R, Shlomovitz I, Munitz A, Gerlic M, et al. A genetic system for biasing the sex ratio in mice. EMBO Rep. 2019;20(8): e48269. doi: 10.15252/embr.201948269 31267640
115. Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature. 1968;218(5139):368–9. doi: 10.1038/218368a0 5649682
116. Hamilton WD. Extraordinary Sex Ratios. Science. 1967;156(3774):477. doi: 10.1126/science.156.3774.477 6021675
117. Serebrovsky A S. On the possibility of a new method for the control of insect pests. In: Sterile-Male Technique for Eradication or Control of Harmful Insects. Vienna: International Atomic Energy Agency; 1969. p. 123–237.
118. Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. Elife. 2014;3: e03401. doi: 10.7554/eLife.03401 25035423
119. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology. 2018;36(11):1062–6. doi: 10.1038/nbt.4245 30247490
120. Grunwald HA, Gantz VM, Poplawski G, Xu XS, Bier E, Cooper KL. Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline. Nature. 2019;566(7742):105–9. doi: 10.1038/s41586-019-0875-2 30675057
121. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211. doi: 10.1146/annurev.biochem.052308.093131 20192759
122. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42. doi: 10.1038/nbt.3190 25798939
123. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34(1):78–83. doi: 10.1038/nbt.3439 26641531
124. Buchman A, Akbari OS. Site-specific transgenesis of the Drosophila melanogaster Y-chromosome using CRISPR/Cas9. Insect Molecular Biology. 2019;28(1):65–73. doi: 10.1111/imb.12528 30079589
125. Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 2017;13(7):e1006796. doi: 10.1371/journal.pgen.1006796 28727785
126. Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017;13(10):e1007039. doi: 10.1371/journal.pgen.1007039 28976972
127. Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA. Evolutionary dynamics of CRISPR gene drives. Sci Adv. 2017;3(4):e1601964. doi: 10.1126/sciadv.1601964 28435878
128. Unckless RL, Clark AG, Messer PW. Evolution of Resistance Against CRISPR/Cas9 Gene Drive. Genetics. 2017;205(2):827–41. doi: 10.1534/genetics.116.197285 27941126
129. Gould F, Huang Y, Legros M, Lloyd AL. A killer-rescue system for self-limiting gene drive of anti-pathogen constructs. Proc Biol Sci. 2008;275(1653):2823–9. doi: 10.1098/rspb.2008.0846 18765342
130. Noble C, Min J, Olejarz J, Buchthal J, Chavez A, Smidler AL, et al. Daisy-chain gene drives for the alteration of local populations. Proc Natl Acad Sci U S A. 2019;116(17):8275–82. doi: 10.1073/pnas.1716358116 30940750
131. Waltz E. First genetically engineered salmon sold in Canada. Nature. 2017;548(7666):148. doi: 10.1038/nature.2017.22116 28796219
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 7
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Masturbační chování žen v ČR − dotazníková studie
- O krok blíže k pochopení efektu placeba při léčbě bolesti
Nejčtenější v tomto čísle
- Holocentric chromosomes
- Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host
- A FAS solution to a DEAD case
- Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis