Impact of insertion sequences on convergent evolution of Shigella species
Autoři:
Jane Hawkey aff001; Jonathan M. Monk aff002; Helen Billman-Jacobe aff003; Bernhard Palsson aff002; Kathryn E. Holt aff001
Působiště autorů:
Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
aff001; Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
aff002; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
aff003; The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
aff004
Vyšlo v časopise:
Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008931
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008931
Souhrn
Shigella species are specialised lineages of Escherichia coli that have converged to become human-adapted and cause dysentery by invading human gut epithelial cells. Most studies of Shigella evolution have been restricted to comparisons of single representatives of each species; and population genomic studies of individual Shigella species have focused on genomic variation caused by single nucleotide variants and ignored the contribution of insertion sequences (IS) which are highly prevalent in Shigella genomes. Here, we investigate the distribution and evolutionary dynamics of IS within populations of Shigella dysenteriae Sd1, Shigella sonnei and Shigella flexneri. We find that five IS (IS1, IS2, IS4, IS600 and IS911) have undergone expansion in all Shigella species, creating substantial strain-to-strain variation within each population and contributing to convergent patterns of functional gene loss within and between species. We find that IS expansion and genome degradation are most advanced in S. dysenteriae and least advanced in S. sonnei; and using genome-scale models of metabolism we show that Shigella species display convergent loss of core E. coli metabolic capabilities, with S. sonnei and S. flexneri following a similar trajectory of metabolic streamlining to that of S. dysenteriae. This study highlights the importance of IS to the evolution of Shigella and provides a framework for the investigation of IS dynamics and metabolic reduction in other bacterial species.
Klíčová slova:
Bacterial genomics – Comparative genomics – Convergent evolution – Genome evolution – Phylogenetic analysis – Pseudogenes – Shigella – Shigella flexneri
Zdroje
1. Kotloff KL, Winickoff JP, Ivanoff B. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bulletin of the World Health Organization. 1999;77: 651 666. 10516787
2. Neter E. THE GENUS SHIGELLA: (Dysentery Bacilli and Allied Species). Bacteriol Rev. 1942;6: 1–36. 16350076
3. O’Loughlin EV, Robins-Browne RM. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes and Infection. 2001;3: 493 507. doi: 10.1016/s1286-4579(01)01405-8 11377211
4. Rolland K, Lambert-Zechovsky N, Picard B, Denamur E. Shigella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli. Microbiology+. 1998;144: 2667 2672. doi: 10.1099/00221287-144-9-2667 9782516
5. Pupo GM, Lan R, Reeves PR. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc National Acad Sci. 2000;97: 10567 10572. doi: 10.1073/pnas.180094797 10954745
6. The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol. 2016;14: 235 250. doi: 10.1038/nrmicro.2016.10 26923111
7. Sahl JW, Morris CR, Emberger J, Fraser CM, Ochieng JB, Juma J, et al. Defining the Phylogenomics of Shigella Species: a Pathway to Diagnostics. Ledeboer NA, editor. J Clin Microbiol. 2015;53: 951 960. doi: 10.1128/JCM.03527-14 25588655
8. Yang J, Nie H, Chen L, Zhang X, Yang F, Xu X, et al. Revisiting the molecular evolutionary history of Shigella spp. J Mol Evol. 2007;64: 71 79. doi: 10.1007/s00239-006-0052-8 17160643
9. Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infection and Immunity. 1982;35: 852 860. 6279518
10. Al-Hasani K, Henderson IR, Sakellaris H, Rajakumar K, Grant T, Nataro JP, et al. The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect Immun. 2000;68: 2457 2463. doi: 10.1128/iai.68.5.2457-2463.2000 10768931
11. Andersson SGE, Kurland CG. Reductive evolution of resident genomes. Trends Microbiol. 1998;6: 263 268. doi: 10.1016/s0966-842x(98)01312-2 9717214
12. Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev. 2004;14: 627 633. doi: 10.1016/j.gde.2004.09.003 15531157
13. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;409: 1007 1011. doi: 10.1038/35059006 11234002
14. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35: 32 40. doi: 10.1038/ng1227 12910271
15. Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 2005;33: 6445 6458. doi: 10.1093/nar/gki954 16275786
16. Ramos HC, Rumbo M, Sirard J-C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 2004;12: 509 517. doi: 10.1016/j.tim.2004.09.002 15488392
17. Bergsten G, Wullt B, Svanborg C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol. 2005;295: 487 502. doi: 10.1016/j.ijmm.2005.07.008 16238023
18. Prosseda G, Martino MLD, Campilongo R, Fioravanti R, Micheli G, Casalino M, et al. Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model. Res Microbiol. 2012;163: 399 406. doi: 10.1016/j.resmic.2012.07.004 22824069
19. Mantis NJ, Sansonetti PJ. The nadB gene of Salmonella typhimurium complements the nicotinic acid auxotrophy of Shigella flexneri. Mol Gen Genetics Mgg. 1996;252: 626 629. doi: 10.1007/BF02172409 8914524
20. Prunier A-L, Schuch R, Fernández RE, Mumy KL, Kohler H, McCormick BA, et al. nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology+. 2007;153: 2363 2372. doi: 10.1099/mic.0.2007/006916-0 17600080
21. Barbagallo M, Martino MLD, Marcocci L, Pietrangeli P, Carolis ED, Casalino M, et al. A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene. Adler B, editor. Plos One. 2011;6: e27226. doi: 10.1371/journal.pone.0027226 22102881
22. Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M. Everyman’s guide to bacterial insertion sequences. Microbiol Spectr. 2015;3. doi: 10.1128/microbiolspec.mdna3-0030-2014 26104715
23. Amman F, D’Halluin A, Antoine R, Huot L, Bibova I, Keidel K, et al. Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis. Rna Biol. 2018;15: 967–975. doi: 10.1080/15476286.2018.1462655 29683387
24. Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis. 2014;59: 933 941. doi: 10.1093/cid/ciu468 24958238
25. Connor TR, Barker CR, Baker KS, Weill F-X, Talukder KA, Smith AM, et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. Tautz D, editor. Elife. 2015;4: e07335. doi: 10.7554/eLife.07335 26238191
26. Njamkepo E, Fawal N, Tran-Dien A, Hawkey J, Strockbine N, Jenkins C, et al. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol. 2016;1: 16027. doi: 10.1038/nmicrobiol.2016.27 27572446
27. Holt KE, Baker S, Weill F-X, Holmes EC, Kitchen A, Yu J, et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet. 2012;44: 1056 1059. doi: 10.1038/ng.2369 22863732
28. Thompson CN, Duy PT, Baker S. The Rising Dominance of Shigella sonnei: An Intercontinental Shift in the Etiology of Bacillary Dysentery. Plos Neglect Trop D. 2015;9: e0003708. doi: 10.1371/journal.pntd.0003708 26068698
29. Holt KE, Nga TVT, Thanh DP, Vinh H, Kim DW, Tra MPV, et al. Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc National Acad Sci. 2013;110: 17522 17527. doi: 10.1073/pnas.1308632110 24082120
30. Kania DA, Hazen TH, Hossain A, Nataro JP, Rasko DA. Genome diversity of Shigella boydii. Thomson N, editor. Pathog Dis. 2016;74: ftw027. doi: 10.1093/femspd/ftw027 27056949
31. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H, Hall RM, et al. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. Bmc Genomics. 2015;16: 667. doi: 10.1186/s12864-015-1860-2 26336060
32. Sansonetti PJ, Kopecko DJ, Formal SB. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infection and Immunity. 1981;34: 75 83. 6271687
33. Duchêne S, Holt KE, Weill F-X, Hello SL, Hawkey J, Edwards DJ, et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom. 2016;2. doi: 10.1099/mgen.0.000094 28348834
34. Petty NK, Zakour NLB, Stanton-Cook M, Skippington E, Totsika M, Forde BM, et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc National Acad Sci. 2014;111: 5694 5699. doi: 10.1073/pnas.1322678111 24706808
35. Williamson DA, Roberts SA, Paterson DL, Sidjabat H, Silvey A, Masters J, et al. Escherichia coli Bloodstream Infection After Transrectal Ultrasound–Guided Prostate Biopsy: Implications of Fluoroquinolone-Resistant Sequence Type 131 as a Major Causative Pathogen. Clin Infect Dis. 2012;54: 1406–1412. doi: 10.1093/cid/cis194 22419681
36. Rogers BA, Kennedy KJ, Sidjabat HE, Jones M, Collignon P, Paterson DL. Prolonged carriage of resistant E. coli by returned travellers: clonality, risk factors and bacterial characteristics. Eur J Clin Microbiol. 2012;31: 2413–2420. doi: 10.1007/s10096-012-1584-z 22391758
37. Peirano G, Bij AK van der, Gregson DB, Pitout JDD. Molecular Epidemiology over an 11-Year Period (2000 to 2010) of Extended-Spectrum β-Lactamase-Producing Escherichia coli Causing Bacteremia in a Centralized Canadian Region. J Clin Microbiol. 2012;50: 294–299. doi: 10.1128/JCM.06025-11 22162555
38. Pitout JDD, Church DL, Gregson DB, Chow BL, McCracken M, Mulvey MR, et al. Molecular Epidemiology of CTX-M-Producing Escherichia coli in the Calgary Health Region: Emergence of CTX-M-15-Producing Isolates▿. Antimicrob Agents Ch. 2007;51: 1281–1286. doi: 10.1128/aac.01377-06 17283198
39. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, et al. Open-Source Genomic Analysis of Shiga-Toxin–Producing E. coli O104:H4. New Engl J Medicine. 2011;365: 718 724. doi: 10.1056/nejmoa1107643 21793736
40. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, et al. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb Genom. 2016;2. doi: 10.1099/mgen.0.000064 28348859
41. Cowley LA, Oresegun DR, Chattaway MA, Dallman TJ, Jenkins C. Phylogenetic comparison of enteroinvasive Escherichia coli isolated from cases of diarrhoeal disease in England, 2005–2016. J Med Microbiol. 2018; doi: 10.1099/jmm.0.000739 29693541
42. Wagner A, Chaux N de la. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences. Mol Genet Genomics. 2008;280: 397–408. doi: 10.1007/s00438-008-0373-y 18751731
43. Iranzo J, Gómez MJ, Saro FJL de, Manrubia S. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes. Plos Comput Biol. 2014;10: e1003680. doi: 10.1371/journal.pcbi.1003680 24967627
44. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc National Acad Sci. 2013;110: 20338 20343. doi: 10.1073/pnas.1307797110 24277855
45. Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc National Acad Sci. 2016;113: E3801 9. doi: 10.1073/pnas.1523199113 27286824
46. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28: 245 248. doi: 10.1038/nbt.1614 20212490
47. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35: 904 908. doi: 10.1038/nbt.3956 29020004
48. Anderson M, Sansonetti PJ, Marteyn BS. Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century. Front Cell Infect Mi. 2016;6: 45. doi: 10.3389/fcimb.2016.00045 27148494
49. Ingle DJ, Easton M, Valcanis M, Seemann T, Kwong JC, Stephens N, et al. Co-circulation of Multidrug-resistant Shigella Among Men Who Have Sex With Men in Australia. Clin Infect Dis. 2019; doi: 10.1093/cid/ciz005 30615105
50. Bardsley M, Jenkins C, Mitchell HD, Mikhail AFW, Baker KS, Foster K, et al. Persistent transmission of shigellosis in England is associated with a recently emerged multi-drug resistant strain of Shigella sonnei. J Clin Microbiol. 2020; doi: 10.1128/jcm.01692-19 31969425
51. Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature. 2017;551: 378–383. doi: 10.1038/nature24467 29144452
52. Baker KS, Dallman TJ, Field N, Childs T, Mitchell H, Day M, et al. Genomic epidemiology of Shigella in the United Kingdom shows transmission of pathogen sublineages and determinants of antimicrobial resistance. Sci Rep-uk. 2018;8: 7389. doi: 10.1038/s41598-018-25764-3 29743642
53. Doig KD, Holt KE, Fyfe JAM, Lavender CJ, Eddyani M, Portaels F, et al. On the origin of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Bmc Genomics. 2012;13: 258. doi: 10.1186/1471-2164-13-258 22712622
54. Roychowdhury T, Mandal S, Bhattacharya A. Analysis of IS6110 insertion sites provide a glimpse into genome evolution of Mycobacterium tuberculosis. Sci Rep-uk. 2015;5: 12567. doi: 10.1038/srep12567 26215170
55. Hamidian M, Hawkey J, Wick R, Holt KE, Hall RM. Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1. Microb Genom. 2019;5. doi: 10.1099/mgen.0.000242 30648939
56. Adams MD, Bishop B, Wright MS. Quantitative assessment of insertion sequence impact on bacterial genome architecture. Microb Genom. 2016;2. doi: 10.1099/mgen.0.000062 28348858
57. Nunvar J, Capek V, Fiser K, Fila L, Drevinek P. What matters in chronic Burkholderia cenocepacia infection in cystic fibrosis: Insights from comparative genomics. Plos Pathog. 2017;13: e1006762. doi: 10.1371/journal.ppat.1006762 29228063
58. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12: R30. doi: 10.1186/gb-2011-12-3-r30 21443786
59. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34: D32 6. doi: 10.1093/nar/gkj014 16381877
60. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. Bmc Bioinformatics. 2009;10: 421. doi: 10.1186/1471-2105-10-421 20003500
61. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research. 2014;
62. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28: 464–469. doi: 10.1093/bioinformatics/btr703 22199388
63. Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 2011;39: gkq1268 e57. doi: 10.1093/nar/gkq1268 21306991
64. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017;3: e000132. doi: 10.1099/mgen.0.000132 29177090
65. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. Plos Comput Biol. 2017;13: e1005595. doi: 10.1371/journal.pcbi.1005595 28594827
66. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357 359. doi: 10.1038/nmeth.1923 22388286
67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078 2079. doi: 10.1093/bioinformatics/btp352 19505943
68. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search Tool. Nucleic Acids Res. 2011;39: W347 W352. doi: 10.1093/nar/gkr485 21672955
69. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312 1313. doi: 10.1093/bioinformatics/btu033 24451623
70. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evol Biol. 2007;7: 214. doi: 10.1186/1471-2148-7-214 17996036
71. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing Polished Prokaryotic Pangenomes with the Panaroo Pipeline. Biorxiv. 2020; 2020.01.28.922989. doi: 10.1101/2020.01.28.922989
72. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler A von, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020; doi: 10.1093/molbev/msaa015 32011700
73. Beghain J, Bridier-Nahmias A, Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom. 2018;4. doi: 10.1099/mgen.0.000192 29916797
74. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;
75. Nguyen L, Schmidt H, Haeseler A, Minh B. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol. 2015;32: 268–274. doi: 10.1093/molbev/msu300 25371430
76. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27: 592 593. doi: 10.1093/bioinformatics/btq706 21169378
77. Wall DP, Fraser HB, Hirsh AE. Detecting putative orthologs. Bioinformatics. 2003;19: 1710 1711. doi: 10.1093/bioinformatics/btg213 15593400
78. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. Bmc Genomics. 2008;9: 75. doi: 10.1186/1471-2164-9-75 18261238
79. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42: D206 14. doi: 10.1093/nar/gkt1226 24293654
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 7
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Masturbační chování žen v ČR − dotazníková studie
- O krok blíže k pochopení efektu placeba při léčbě bolesti
Nejčtenější v tomto čísle
- Holocentric chromosomes
- Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host
- A FAS solution to a DEAD case
- Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis