Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy
Autoři:
Sathiya N. Manivannan aff001; Sihem Darouich aff003; Aida Masmoudi aff004; David Gordon aff005; Gloria Zender aff001; Zhe Han aff006; Sara Fitzgerald-Butt aff001; Peter White aff005; Kim L. McBride aff001; Maher Kharrat aff003; Vidu Garg aff001
Působiště autorů:
Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
aff001; Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
aff002; University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
aff003; University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Embryo-Fetopathology, Maternity and Neonatology Center, Tunis, Tunisia
aff004; Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
aff005; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
aff006; Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
aff007; Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
aff008
Vyšlo v časopise:
Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008639
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008639
Souhrn
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy.
Klíčová slova:
Alleles – Cardiac ventricles – Cardiomyopathies – Drosophila melanogaster – Hyperexpression techniques – Mouse models – Myocardium – Myosins
Zdroje
1. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996;93(5):841–2. Epub 1996/03/01. doi: 10.1161/01.cir.93.5.841 8598070.
2. Fatkin D, Seidman CE, Seidman JG. Genetics and disease of ventricular muscle. Cold Spring Harb Perspect Med. 2014;4(1):a021063. Epub 2014/01/05. doi: 10.1101/cshperspect.a021063 24384818; PubMed Central PMCID: PMC3869277.
3. Regnier M. Mechanistic complexity of contractile dysfunction in hypertrophic cardiomyopathy. J Gen Physiol. 2018;150(8):1051–3. Epub 2018/07/25. doi: 10.1085/jgp.201812091 30037852; PubMed Central PMCID: PMC6080894.
4. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. The Lancet. 2004;363(9424):1881–91. https://doi.org/10.1016/S0140-6736(04)16358-7.
5. Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med. 2008;5(3):158–68. Epub 2008/01/30. doi: 10.1038/ncpcardio1110 18227814.
6. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92(4):785–9. Epub 1995/08/15. doi: 10.1161/01.cir.92.4.785 7641357.
7. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–67. Epub 2001/03/10. doi: 10.1016/s0092-8674(01)00242-2 11239412.
8. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119(8):1085–92. Epub 2009/02/18. doi: 10.1161/CIRCULATIONAHA.108.804617 19221222.
9. Elliott PM, Gimeno JR, Thaman R, Shah J, Ward D, Dickie S, et al. Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart. 2006;92(6):785–91. Epub 2005/10/12. doi: 10.1136/hrt.2005.068577 16216855; PubMed Central PMCID: PMC1860645.
10. Elliott PM, Poloniecki J, Dickie S, Sharma S, Monserrat L, Varnava A, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000;36(7):2212–8. Epub 2000/12/29. doi: 10.1016/s0735-1097(00)01003-2 11127463.
11. Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies. Physiol Rev. 2002;82(4):945–80. Epub 2002/09/25. doi: 10.1152/physrev.00012.2002 12270949.
12. McKenna WJ, Kleinebenne A, Nihoyannopoulos P, Foale R. Echocardiographic measurement of right ventricular wall thickness in hypertrophic cardiomyopathy: relation to clinical and prognostic features. J Am Coll Cardiol. 1988;11(2):351–8. Epub 1988/02/01. doi: 10.1016/0735-1097(88)90101-5 2963057.
13. Varnava AM, Elliott PM, Mahon N, Davies MJ, McKenna WJ. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol. 2001;88(3):275–9. Epub 2001/07/27. doi: 10.1016/s0002-9149(01)01640-x 11472707.
14. Seidman CE, Seidman JG. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ Res. 2011;108(6):743–50. Epub 2011/03/19. doi: 10.1161/CIRCRESAHA.110.223834 21415408; PubMed Central PMCID: PMC3072749.
15. Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33(4):655–70. Epub 2001/03/29. doi: 10.1006/jmcc.2001.1340 11273720; PubMed Central PMCID: PMC2901497.
16. Van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(9):1903–10. Epub 2004/11/03. doi: 10.1016/j.jacc.2004.07.045 15519027.
17. Charron P, Komajda M. Molecular genetics in hypertrophic cardiomyopathy: towards individualized management of the disease. Expert Rev Mol Diagn. 2006;6(1):65–78. Epub 2005/12/20. doi: 10.1586/14737159.6.1.65 16359268.
18. Ho CY, Seidman CE. A contemporary approach to hypertrophic cardiomyopathy. Circulation. 2006;113(24):e858–62. Epub 2006/06/21. doi: 10.1161/CIRCULATIONAHA.105.591982 16785342.
19. Monasky MM, Ciconte G, Anastasia L, Pappone C. Commentary: Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome. Front Physiol. 2017;8:1056. Epub 2018/01/10. doi: 10.3389/fphys.2017.01056 29311983; PubMed Central PMCID: PMC5733025.
20. Mango R, Luchetti A, Sangiuolo R, Ferradini V, Briglia N, Giardina E, et al. Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome. Circ J. 2016;80(4):938–49. Epub 2016/03/11. doi: 10.1253/circj.CJ-15-0685 26960954.
21. Glotov AS, Kazakov SV, Zhukova EA, Alexandrov AV, Glotov OS, Pakin VS, et al. Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group. Clin Chim Acta. 2015;446:132–40. Epub 2015/04/22. doi: 10.1016/j.cca.2015.04.014 25892673.
22. Millat G, Chanavat V, Rousson R. Evaluation of a new NGS method based on a custom AmpliSeq library and Ion Torrent PGM sequencing for the fast detection of genetic variations in cardiomyopathies. Clin Chim Acta. 2014;433:266–71. Epub 2014/04/12. doi: 10.1016/j.cca.2014.03.032 24721642.
23. Zhao Y, Feng Y, Ding X, Dong S, Zhang H, Ding J, et al. Identification of a novel hypertrophic cardiomyopathy-associated mutation using targeted next-generation sequencing. Int J Mol Med. 2017;40(1):121–9. Epub 2017/05/13. doi: 10.3892/ijmm.2017.2986 28498465; PubMed Central PMCID: PMC5466385.
24. Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C, Dalageorgou C, et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet. 2013;50(4):228–39. Epub 2013/02/12. doi: 10.1136/jmedgenet-2012-101270 23396983; PubMed Central PMCID: PMC3607113.
25. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(9):899–909. Epub 2018/06/16. doi: 10.1038/s41436-018-0039-z 29904160.
26. Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ Genom Precis Med. 2019;12(2):e002460. Epub 2019/01/27. doi: 10.1161/CIRCGEN.119.002460 30681346; PubMed Central PMCID: PMC6410971.
27. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894–900. Epub 2002/08/31. doi: 10.1093/nar/gkf493 12202775; PubMed Central PMCID: PMC137415.
28. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–D94. Epub 2018/10/30. doi: 10.1093/nar/gky1016 30371827; PubMed Central PMCID: PMC6323892.
29. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics. 2009;25(12):i54–62. Epub 2009/05/30. doi: 10.1093/bioinformatics/btp190 19478016; PubMed Central PMCID: PMC2687944.
30. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34(1):57–65. Epub 2012/10/04. doi: 10.1002/humu.22225 23033316; PubMed Central PMCID: PMC3558800.
31. Siepel A, Haussler D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol. 2004;21(3):468–88. Epub 2003/12/09. doi: 10.1093/molbev/msh039 14660683.
32. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6(12):e1001025. Epub 2010/12/15. doi: 10.1371/journal.pcbi.1001025 21152010; PubMed Central PMCID: PMC2996323.
33. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. Epub 2015/03/06. doi: 10.1038/gim.2015.30 25741868; PubMed Central PMCID: PMC4544753.
34. Strande NT, Brnich SE, Roman TS, Berg JS. Navigating the nuances of clinical sequence variant interpretation in Mendelian disease. Genet Med. 2018;20(9):918–26. Epub 2018/07/11. doi: 10.1038/s41436-018-0100-y 29988079.
35. Claes GR, van Tienen FH, Lindsey P, Krapels IP, Helderman-van den Enden AT, Hoos MB, et al. Hypertrophic remodelling in cardiac regulatory myosin light chain (MYL2) founder mutation carriers. Eur Heart J. 2016;37(23):1815–22. Epub 2015/10/27. doi: 10.1093/eurheartj/ehv522 26497160.
36. Szczesna D. Regulatory light chains of striated muscle myosin. Structure, function and malfunction. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3(2):187–97. Epub 2003/05/29. doi: 10.2174/1568006033481474 12769642.
37. Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13(1):63–9. Epub 1996/05/01. doi: 10.1038/ng0596-63 8673105.
38. Alvarez-Acosta L, Mazzanti A, Fernández X, Ortí M, Barriales-Villa R, García D, et al. Regulatory light chain (MYL2) mutations in familial hypertrophic cardiomyopathy. J Cardiovasc Dis. 2014;2:82–90.
39. Olivotto I, Girolami F, Ackerman MJ, Nistri S, Bos JM, Zachara E, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83(6):630–8. Epub 2008/06/06. doi: 10.4065/83.6.630 18533079.
40. Santos S, Marques V, Pires M, Silveira L, Oliveira H, Lanca V, et al. High resolution melting: improvements in the genetic diagnosis of hypertrophic cardiomyopathy in a Portuguese cohort. BMC Med Genet. 2012;13:17. Epub 2012/03/21. doi: 10.1186/1471-2350-13-17 22429680; PubMed Central PMCID: PMC3359199.
41. Andersen PS, Havndrup O, Hougs L, Sorensen KM, Jensen M, Larsen LA, et al. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat. 2009;30(3):363–70. Epub 2008/11/28. doi: 10.1002/humu.20862 19035361.
42. Garcia-Pavia P, Vazquez ME, Segovia J, Salas C, Avellana P, Gomez-Bueno M, et al. Genetic basis of end-stage hypertrophic cardiomyopathy. Eur J Heart Fail. 2011;13(11):1193–201. Epub 2011/09/08. doi: 10.1093/eurjhf/hfr110 21896538.
43. Burns C, Bagnall RD, Lam L, Semsarian C, Ingles J. Multiple Gene Variants in Hypertrophic Cardiomyopathy in the Era of Next-Generation Sequencing. Circ Cardiovasc Genet. 2017;10(4). Epub 2017/08/10. doi: 10.1161/CIRCGENETICS.116.001666 28790153.
44. Geeves MA. Stretching the lever-arm theory. Nature. 2002;415(6868):129–31. Epub 2002/01/24. doi: 10.1038/415129a 11805818.
45. Sheikh F, Lyon RC, Chen J. Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene. 2015;569(1):14–20. Epub 2015/06/16. doi: 10.1016/j.gene.2015.06.027 26074085; PubMed Central PMCID: PMC4496279.
46. Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. European Biophysics Journal. 2016;45(8):779–805. doi: 10.1007/s00249-016-1128-z 27084718
47. Sitbon YH, Yadav S, Kazmierczak K, Szczesna‐Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. Journal of Muscle Research and Cell Motility. 2019. doi: 10.1007/s10974-019-09517-x 31131433
48. Grey C, Mery A, Puceat M. Fine-tuning in Ca2+ homeostasis underlies progression of cardiomyopathy in myocytes derived from genetically modified embryonic stem cells. Hum Mol Genet. 2005;14(10):1367–77. Epub 2005/04/15. doi: 10.1093/hmg/ddi146 15829506.
49. Kampourakis T, Sun YB, Irving M. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci U S A. 2016;113(21):E3039–47. Epub 2016/05/11. doi: 10.1073/pnas.1602776113 27162358; PubMed Central PMCID: PMC4889392.
50. Zhou Z, Huang W, Liang J, Szczesna-Cordary D. Molecular and Functional Effects of a Splice Site Mutation in the MYL2 Gene Associated with Cardioskeletal Myopathy and Early Cardiac Death in Infants. Front Physiol. 2016;7:240. Epub 2016/07/06. doi: 10.3389/fphys.2016.00240 27378946; PubMed Central PMCID: PMC4911367.
51. Szczesna-Cordary D, Guzman G, Ng SS, Zhao J. Familial hypertrophic cardiomyopathy-linked alterations in Ca2+ binding of human cardiac myosin regulatory light chain affect cardiac muscle contraction. J Biol Chem. 2004;279(5):3535–42. Epub 2003/11/05. doi: 10.1074/jbc.M307092200 14594949.
52. Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J. 2019;286(1):151–68. Epub 2018/11/16. doi: 10.1111/febs.14702 30430732; PubMed Central PMCID: PMC6326841.
53. Yuan CC, Kazmierczak K, Liang J, Zhou Z, Yadav S, Gomes AV, et al. Sarcomeric perturbations of myosin motors lead to dilated cardiomyopathy in genetically modified MYL2 mice. Proc Natl Acad Sci U S A. 2018;115(10):E2338–E47. Epub 2018/02/22. doi: 10.1073/pnas.1716925115 29463717; PubMed Central PMCID: PMC5877945.
54. Kampourakis T, Ponnam S, Irving M. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle. J Mol Cell Cardiol. 2018;117:72–81. Epub 2018/02/17. doi: 10.1016/j.yjmcc.2018.02.009 29452157; PubMed Central PMCID: PMC5883317.
55. Szczesna D, Ghosh D, Li Q, Gomes AV, Guzman G, Arana C, et al. Familial hypertrophic cardiomyopathy mutations in the regulatory light chains of myosin affect their structure, Ca2+ binding, and phosphorylation. J Biol Chem. 2001;276(10):7086–92. Epub 2000/12/05. doi: 10.1074/jbc.M009823200 11102452.
56. Chen J, Kubalak SW, Minamisawa S, Price RL, Becker KD, Hickey R, et al. Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem. 1998;273(2):1252–6. Epub 1998/02/14. doi: 10.1074/jbc.273.2.1252 9422794.
57. Chen Z, Huang W, Dahme T, Rottbauer W, Ackerman MJ, Xu X. Depletion of zebrafish essential and regulatory myosin light chains reduces cardiac function through distinct mechanisms. Cardiovasc Res. 2008;79(1):97–108. Epub 2008/03/18. doi: 10.1093/cvr/cvn073 18343897; PubMed Central PMCID: PMC2724891.
58. Sanbe A, Fewell JG, Gulick J, Osinska H, Lorenz J, Hall DG, et al. Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2. J Biol Chem. 1999;274(30):21085–94. Epub 1999/07/20. doi: 10.1074/jbc.274.30.21085 10409661.
59. Tohtong R, Yamashita H, Graham M, Haeberle J, Simcox A, Maughan D. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature. 1995;374(6523):650–3. Epub 1995/04/13. doi: 10.1038/374650a0 7715706.
60. Szczesna-Cordary D, Guzman G, Zhao J, Hernandez O, Wei J, Diaz-Perez Z. The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice. J Cell Sci. 2005;118(Pt 16):3675–83. Epub 2005/08/04. doi: 10.1242/jcs.02492 16076902.
61. Huang W, Liang J, Yuan CC, Kazmierczak K, Zhou Z, Morales A, et al. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain. FEBS J. 2015;282(12):2379–93. Epub 2015/04/01. doi: 10.1111/febs.13286 25825243; PubMed Central PMCID: PMC4472530.
62. Weterman MA, Barth PG, van Spaendonck-Zwarts KY, Aronica E, Poll-The BT, Brouwer OF, et al. Recessive MYL2 mutations cause infantile type I muscle fibre disease and cardiomyopathy. Brain. 2013;136(Pt 1):282–93. Epub 2013/02/01. doi: 10.1093/brain/aws293 23365102.
63. Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN, et al. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics. Genome Biol. 2015;16:6. Epub 2015/01/21. doi: 10.1186/s13059-014-0577-x 25600152; PubMed Central PMCID: PMC4333267.
64. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98(2):367–81. Epub 1976/03/15. doi: 10.1016/0014-4827(76)90447-x 943302.
65. Thibaudeau TA, Smith DM. A Practical Review of Proteasome Pharmacology. Pharmacol Rev. 2019;71(2):170–97. Epub 2019/03/15. doi: 10.1124/pr.117.015370 30867233; PubMed Central PMCID: PMC6423620.
66. Moore JR, Dickinson MH, Vigoreaux JO, Maughan DW. The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle. Biophys J. 2000;78(3):1431–40. Epub 2000/02/29. doi: 10.1016/S0006-3495(00)76696-3 10692328; PubMed Central PMCID: PMC1300741.
67. Marttila M, Win W, Al-Ghamdi F, Abdel-Hamid HZ, Lacomis D, Beggs AH. MYL2-associated congenital fiber-type disproportion and cardiomyopathy with variants in additional neuromuscular disease genes; the dilemma of panel testing. Cold Spring Harb Mol Case Stud. 2019;5(4). Epub 2019/05/28. doi: 10.1101/mcs.a004184 31127036.
68. MYL2 myosin, light chain 2, regulatory, cardiac, slow Dataset gnomAD v2.1.1 gnomAD SVs [Internet]. 2019 [cited 8/7/2019]. Available from: https://gnomad.broadinstitute.org/gene/ENSG00000111245.
69. Burghardt TP, Sikkink LA. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm. Biochemistry. 2013;52(7):1249–59. Epub 2013/01/25. doi: 10.1021/bi301500d 23343568; PubMed Central PMCID: PMC3587134.
70. Wang Y, Wang Z, Yang Q, Zou Y, Zhang H, Yan C, et al. Autosomal recessive transmission of MYBPC3 mutation results in malignant phenotype of hypertrophic cardiomyopathy. PLoS One. 2013;8(6):e67087. Epub 2013/07/11. doi: 10.1371/journal.pone.0067087 23840593; PubMed Central PMCID: PMC3695947.
71. Zaleta-Rivera K, Dainis A, Ribeiro AJS, Sanchez Cordero P, Rubio G, Shang C, et al. Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Due to a Human Myosin Regulatory Light Chain Mutation. Circulation. 2019. Epub 2019/07/19. doi: 10.1161/CIRCULATIONAHA.118.036965 31315475.
72. Cui Y, Zheng Y, Liu X, Yan L, Fan X, Yong J, et al. Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. Cell Rep. 2019;26(7):1934–50 e5. Epub 2019/02/14. doi: 10.1016/j.celrep.2019.01.079 30759401.
73. Edelheit O, Hanukoglu A, Hanukoglu I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 2009;9:61. Epub 2009/07/02. doi: 10.1186/1472-6750-9-61 19566935; PubMed Central PMCID: PMC2711942.
74. Fink M, Callol-Massot C, Chu A, Ruiz-Lozano P, Izpisua Belmonte JC, Giles W, et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques. 2009;46(2):101–13. Epub 2009/03/26. doi: 10.2144/000113078 19317655; PubMed Central PMCID: PMC2855226.
75. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and Eosin Staining of Tissue and Cell Sections. Cold Spring Harbor Protocols. 2008;2008(5):pdb.prot4986. doi: 10.1101/pdb.prot4986 21356829
76. Schipke J, Brandenberger C, Rajces A, Manninger M, Alogna A, Post H, et al. Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification. J Appl Physiol (1985). 2017;122(4):1019–30. Epub 2017/01/28. doi: 10.1152/japplphysiol.00987.2016 28126909.
77. Zikova M, Da Ponte JP, Dastugue B, Jagla K. Patterning of the cardiac outflow region in Drosophila. Proc Natl Acad Sci U S A. 2003;100(21):12189–94. Epub 2003/10/02. doi: 10.1073/pnas.2133156100 14519845; PubMed Central PMCID: PMC218734.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 5
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
Nejčtenější v tomto čísle
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy
- A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum