The genomic landscape of metastasis in treatment-naïve breast cancer models
Autoři:
Christina Ross aff001; Karol Szczepanek aff001; Maxwell Lee aff002; Howard Yang aff002; Tinghu Qiu aff001; Jack Sanford aff001; Kent Hunter aff001; Jack D. Sanford aff001
Působiště autorů:
Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
aff001; Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
aff002
Vyšlo v časopise:
The genomic landscape of metastasis in treatment-naïve breast cancer models. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008743
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008743
Souhrn
Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.
Klíčová slova:
Breast cancer – Comparative genomics – Genome annotation – Mammalian genomics – Metastasis – Metastatic tumors – Mouse models – RNA sequencing
Zdroje
1. Sonnenblick A, Pondé N, Piccart M. Metastatic breast cancer: The Odyssey of personalization. Mol Oncol. 2016;10: 1147–1159. doi: 10.1016/j.molonc.2016.07.002 27430154
2. Female Breast Cancer—Cancer Stat Facts [Internet]. [cited 11 Apr 2018]. Available: https://seer.cancer.gov/statfacts/html/breast.html
3. Mattson J, Huovinen R. [Treatment of disseminated breast cancer]. Duodecim. 2015;131: 1033–1040.
4. Rachdi H, Mokrani A, Batti R, Ayadi M, Chraiet N, Mezlini A. Target therapy for metastatic breast cancer. Tunis Med. 2018;96: 465–471.
5. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16: 201–218. doi: 10.1038/nrc.2016.25 27009393
6. Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J, et al. Breast cancer metastasis: challenges and opportunities. Cancer Res. 2009;69: 4951–4953. doi: 10.1158/0008-5472.CAN-09-0099 19470768
7. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194: 23–28. doi: 10.1126/science.959840 959840
8. Hunter KW, Amin R, Deasy S, Ha N-H, Wakefield L. Genetic insights into the morass of metastatic heterogeneity. Nat Rev Cancer. 2018;18: 211–223. doi: 10.1038/nrc.2017.126 29422598
9. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15: 81–94. doi: 10.1038/nrclinonc.2017.166 29115304
10. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med. 2015;21: 846–853. doi: 10.1038/nm.3915 26248267
11. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501: 328–337. doi: 10.1038/nature12624 24048065
12. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490: 61–70. doi: 10.1038/nature11412 23000897
13. Faraji F, Hu Y, Yang HH, Lee MP, Winkler GS, Hafner M, et al. Post-transcriptional Control of Tumor Cell Autonomous Metastatic Potential by CCR4-NOT Deadenylase CNOT7. PLoS Genet. 2016;12: e1005820. doi: 10.1371/journal.pgen.1005820 26807845
14. Ha N-H, Long J, Cai Q, Shu XO, Hunter KW. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer. PLoS Genet. 2016;12: e1006267. doi: 10.1371/journal.pgen.1006267 27656887
15. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14: 430–439. doi: 10.1038/nrc3726 24827502
16. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35: 645–654. doi: 10.1007/s10555-016-9648-7 27878502
17. Patel SA, Vanharanta S. Epigenetic determinants of metastasis. Mol Oncol. 2017;11: 79–96. doi: 10.1016/j.molonc.2016.09.008 27756687
18. Hosseini H, Obradović MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540: 552–558. doi: 10.1038/nature20785 27974799
19. Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun. 2018;9: 21. doi: 10.1038/s41467-017-02481-5 29295986
20. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540: 588–592. doi: 10.1038/nature20609 27974798
21. Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR, et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol. 2013;14: R125. doi: 10.1186/gb-2013-14-11-r125 24220145
22. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12: 954–961. doi: 10.1128/MCB.12.3.954 1312220
23. Goddard KAB, Weinmann S, Richert-Boe K, Chen C, Bulkley J, Wax C. HER2 evaluation and its impact on breast cancer treatment decisions. Public Health Genomics. 2012;15: 1–10. doi: 10.1159/000325746 21540562
24. Yaziji H, Goldstein LC, Barry TS, Werling R, Hwang H, Ellis GK, et al. HER-2 testing in breast cancer using parallel tissue-based methods. JAMA. 2004;291: 1972–1977. doi: 10.1001/jama.291.16.1972 15113815
25. Millis SZ, Ikeda S, Reddy S, Gatalica Z, Kurzrock R. Landscape of Phosphatidylinositol-3-Kinase Pathway Alterations Across 19 784 Diverse Solid Tumors. JAMA Oncol. 2016;2: 1565–1573. doi: 10.1001/jamaoncol.2016.0891 27388585
26. Liu Y, Patel L, Mills GB, Lu KH, Sood AK, Ding L, et al. Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma. J Natl Cancer Inst. 2014;106. doi: 10.1093/jnci/dju245 25214561
27. Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet. 2012;8: e1002926. doi: 10.1371/journal.pgen.1002926 23028344
28. Lancaster M, Rouse J, Hunter KW. Modifiers of mammary tumor progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm Genome. 2005;16: 120–126.
29. Le Voyer T, Rouse J, Lu Z, Lifsted T, Williams M, Hunter KW. Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density. Genomics. 2001;74: 253–261. doi: 10.1006/geno.2001.6562 11414753
30. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28: 495–501. doi: 10.1038/nbt.1630 20436461
31. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534: 47–54. doi: 10.1038/nature17676 27135926
32. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MGF, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol. 2011;7: e1001138. doi: 10.1371/journal.pcbi.1001138 21625565
33. Fan X, Abbott TE, Larson D, Chen K. BreakDancer: Identification of Genomic Structural Variation from Paired-End Read Mapping. Curr Protoc Bioinformatics. 2014;45: 15.6.1–11. doi: 10.1002/0471250953.bi1506s45 25152801
34. Yang Y, Yang HH, Hu Y, Watson PH, Liu H, Geiger TR, et al. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget. 2017;8: 30621–30643. doi: 10.18632/oncotarget.15695 28430642
35. Alzubi MA, Turner TH, Olex AL, Sohal SS, Tobin NP, Recio SG, et al. Separation of breast cancer and organ microenvironment transcriptomes in metastases. Breast Cancer Res. 2019;21: 36. doi: 10.1186/s13058-019-1123-2 30841919
36. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell. 2014;158: 171–184. doi: 10.1016/j.cell.2014.06.004 24954536
37. Kim R-K, Suh Y, Yoo K-C, Cui Y-H, Kim H, Kim M-J, et al. Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp Mol Med. 2015;47: e137. doi: 10.1038/emm.2014.99 25633745
38. Hollern DP, Swiatnicki MR, Andrechek ER. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet. 2018;14: e1007135. doi: 10.1371/journal.pgen.1007135 29346386
39. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20: 69–84. doi: 10.1038/s41580-018-0080-4 30459476
40. Hoefnagel LDC, van der Groep P, van de Vijver MJ, Boers JE, Wesseling P, Wesseling J, et al. Discordance in ERα, PR and HER2 receptor status across different distant breast cancer metastases within the same patient. Ann Oncol. 2013;24: 3017–3023. doi: 10.1093/annonc/mdt390 24114857
41. Bell R, Barraclough R, Vasieva O. Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers. Curr Mol Med. 2017;17: 200–210. doi: 10.2174/1566524017666170807144946 28782484
42. Krøigård AB, Larsen MJ, Thomassen M, Kruse TA. Molecular concordance between primary breast cancer and matched metastases. Breast J. 2016;22: 420–430. doi: 10.1111/tbj.12596 27089067
43. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464: 999–1005. doi: 10.1038/nature08989 20393555
44. Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, Shia J, et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol. 2012;30: 2956–2962. doi: 10.1200/JCO.2011.38.2994 22665543
45. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003;163: 2113–2126. doi: 10.1016/S0002-9440(10)63568-7 14578209
46. Kuukasjärvi T, Karhu R, Tanner M, Kähkönen M, Schäffer A, Nupponen N, et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 1997;57: 1597–1604.
47. De Mattos-Arruda L, Sammut S-J, Ross EM, Bashford-Rogers R, Greenstein E, Markus H, et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 2019;27: 2690–2708.e10. doi: 10.1016/j.celrep.2019.04.098 31141692
48. Echeverria GV, Powell E, Seth S, Ge Z, Carugo A, Bristow C, et al. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat Commun. 2018;9: 5079. doi: 10.1038/s41467-018-07406-4 30498242
49. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell. 2018;34: 427–438.e6. doi: 10.1016/j.ccell.2018.08.008 30205045
50. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell. 2017;32: 169–184.e7. doi: 10.1016/j.ccell.2017.07.005 28810143
51. Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A, Nguyen L, et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet. 2019;51: 1450–1458. doi: 10.1038/s41588-019-0507-7 31570896
52. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569: 560–564. doi: 10.1038/s41586-019-1056-z 31118521
53. Nayar U, Cohen O, Kapstad C, Cuoco MS, Waks AG, Wander SA, et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat Genet. 2019;51: 207–216. doi: 10.1038/s41588-018-0287-5 30531871
54. Pereira AAL, Rego JFM, Morris V, Overman MJ, Eng C, Garrett CR, et al. Association between KRAS mutation and lung metastasis in advanced colorectal cancer. Br J Cancer. 2015;112: 424–428. doi: 10.1038/bjc.2014.619 25535726
55. Jancík S, Drábek J, Radzioch D, Hajdúch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010;2010: 150960. doi: 10.1155/2010/150960 20617134
56. Lièvre A, Bachet J-B, Le Corre D, Boige V, Landi B, Emile J-F, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66: 3992–3995. doi: 10.1158/0008-5472.CAN-06-0191 16618717
57. Sánchez-Muñoz A, Gallego E, de Luque V, Pérez-Rivas LG, Vicioso L, Ribelles N, et al. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer. 2010;10: 136. doi: 10.1186/1471-2407-10-136 20385028
58. Wills MKB, Jones N. Teaching an old dogma new tricks: twenty years of Shc adaptor signalling. Biochem J. 2012;447: 1–16. doi: 10.1042/BJ20120769 22970934
59. D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001;7: 235–239. doi: 10.1038/84691 11175856
60. Campbell KM, O’Leary KA, Rugowski DE, Mulligan WA, Barnell EK, Skidmore ZL, et al. A spontaneous aggressive erα+ mammary tumor model is driven by kras activation. Cell Rep. 2019;28: 1526–1537.e4. doi: 10.1016/j.celrep.2019.06.098 31390566
61. Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, et al. Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discov. 2018;8: 354–369. doi: 10.1158/2159-8290.CD-17-0679 29203461
62. Jeong W-J, Ro EJ, Choi K-Y. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. npj Precision Onc. 2018;2: 5. doi: 10.1038/s41698-018-0049-y 29872723
63. Malek JA, Mery E, Mahmoud YA, Al-Azwani EK, Roger L, Huang R, et al. Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis. PLoS One. 2011;6: e28561. doi: 10.1371/journal.pone.0028561 22194851
64. Behring M, Shrestha S, Manne U, Cui X, Gonzalez-Reymundez A, Grueneberg A, et al. Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive ductal breast carcinoma. Oncotarget. 2018;9: 36836–36848. doi: 10.18632/oncotarget.26386 30627325
65. Kutilin DS, Leyman IA, Lazutin YN, Chubaryan AV, Anistratov PA, Stateshny ON, et al. Genes copy number variation in tumor cells of patients with metastatic and non-metastatic lung adenocarcinoma. J Clin Oncol. 2019;37: e14502–e14502. doi: 10.1200/JCO.2019.37.15_suppl.e14502
66. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA. 2010;107: 16910–16915. doi: 10.1073/pnas.1009843107 20837533
67. El Gammal AT, Brüchmann M, Zustin J, Isbarn H, Hellwinkel OJC, Köllermann J, et al. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res. 2010;16: 56–64. doi: 10.1158/1078-0432.CCR-09-1423 20028754
68. Sato K, Qian J, Slezak JM, Lieber MM, Bostwick DG, Bergstralh EJ, et al. Clinical Significance of Alterations of Chromosome 8 in High-Grade, Advanced, Nonmetastatic Prostate Carcinoma. JNCI Journal of the National Cancer Institute. 1999;91: 1574–1580. doi: 10.1093/jnci/91.18.1574 10491435
69. Kang JU. Chromosome 8q as the most frequent target for amplification in early gastric carcinoma. Oncol Lett. 2014;7: 1139–1143. doi: 10.3892/ol.2014.1849 24944681
70. Beuten J, Gelfond JAL, Martinez-Fierro ML, Weldon KS, Crandall AC, Rojas-Martinez A, et al. Association of chromosome 8q variants with prostate cancer risk in Caucasian and Hispanic men. Carcinogenesis. 2009;30: 1372–1379. doi: 10.1093/carcin/bgp148 19528667
71. Bilal E, Vassallo K, Toppmeyer D, Barnard N, Rye IH, Almendro V, et al. Amplified loci on chromosomes 8 and 17 predict early relapse in ER-positive breast cancers. PLoS One. 2012;7: e38575. doi: 10.1371/journal.pone.0038575 22719901
72. Yong ZWE, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZAA, Ismail SM, et al. Genetic alterations of chromosome 8 genes in oral cancer. Sci Rep. 2014;4: 6073. doi: 10.1038/srep06073 25123227
73. Weiss L. Dynamic aspects of cancer cell populations in metastasis. Am J Pathol. 1979;97: 601–608.
74. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347: 1999–2009. doi: 10.1056/NEJMoa021967 12490681
75. Baudot A, Real FX, Izarzugaza JMG, Valencia A. From cancer genomes to cancer models: bridging the gaps. EMBO Rep. 2009;10: 359–366. doi: 10.1038/embor.2009.46 19305388
76. Fugmann RA, Anderson JC, Stolfi RL, Martin DS. Comparison of adjuvant chemotherapeutic activity against primary and metastatic spontaneous murine tumors. Cancer Res. 1977;37: 496–500.
77. Yuan TL, Fellmann C, Lee C-S, Ritchie CD, Thapar V, Lee LC, et al. Development of siRNA payloads to target KRAS-mutant cancer. Cancer Discov. 2014;4: 1182–1197. doi: 10.1158/2159-8290.CD-13-0900 25100204
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 5
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Masturbační chování žen v ČR − dotazníková studie
- O krok blíže k pochopení efektu placeba při léčbě bolesti
Nejčtenější v tomto čísle
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica
- Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy