#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae


Autoři: Davide Marchi aff001;  Kirankumar Santhakumar aff002;  Eleanor Markham aff001;  Nan Li aff003;  Karl-Heinz Storbeck aff004;  Nils Krone aff003;  Vincent T. Cunliffe aff001;  Fredericus J. M. van Eeden aff001
Působiště autorů: The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom aff001;  Department of Genetic Engineering, SRM Institute of Science and Technology Kattankulathur, India aff002;  The Bateson Centre & Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom aff003;  Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, South Africa aff004;  Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany aff005
Vyšlo v časopise: Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008757
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008757

Souhrn

In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo.

Klíčová slova:

Cellular crosstalk – Cortisol – Embryos – Gene expression – Larvae – Medical hypoxia – Tails – Zebrafish


Zdroje

1. Alsop D, Vijayan M. The zebrafish stress axis: Molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol. 2009;161: 62–66. doi: 10.1016/j.ygcen.2008.09.011 18930731

2. Tokarz J, Möller G, Hrabě De Angelis M, Adamski J. Zebrafish and steroids: What do we know and what do we need to know? Journal of Steroid Biochemistry and Molecular Biology. 2013. doi: 10.1016/j.jsbmb.2013.01.003 23376612

3. Faught E, Vijayan MM. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci Rep. 2018;8: 1–11. doi: 10.1038/s41598-017-17765-5 29311619

4. Griffiths BB, Schoonheim PJ, Ziv L, Voelker L, Baier H, Gahtan E. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci. 2012;6: 68. doi: 10.3389/fnbeh.2012.00068 23087630

5. Facchinello N, Skobo T, Meneghetti G, Colletti E, Dinarello A, Tiso N, et al. nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Sci Rep. 2017;7: 4371. doi: 10.1038/s41598-017-04535-6 28663543

6. Bamberger CM, Schulte HM, Chrousos GP. Molecular Determinants of Glucocorticoid Receptor Function and Tissue Sensitivity to Glucocorticoids. Endocr Rev. 1996;17: 245–261. doi: 10.1210/edrv-17-3-245 8771358

7. Mitre-Aguilar IB, Cabrera-Quintero AJ, Zentella-Dehesa A. Genomic and non-genomic effects of glucocorticoids: implications for breast cancer. Int J Clin Exp Pathol. 2015;8: 1–10. Available: https://www.ncbi.nlm.nih.gov/pubmed/25755688 25755688

8. Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol. 2008;4: 525. Available: doi: 10.1038/ncprheum0898 18762788

9. Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic Effects of Glucocorticoids: An Updated View. Trends in Pharmacological Sciences. 2019. doi: 10.1016/j.tips.2018.11.002 30497693

10. Semenza GL. Oxygen Sensing, Homeostasis, and Disease. N Engl J Med. 2011;365: 537–547. doi: 10.1056/NEJMra1011165 21830968

11. Dougherty EJ, Pollenz RS. ARNT: A Key bHLH/PAS Regulatory Protein Across Multiple Pathways. Compr Toxicol. 2010; 231–252. doi: 10.1016/B978-0-08-046884-6.00214–1

12. Elks PM, Renshaw SA, Meijer AH, Walmsley SR, van Eeden FJ. Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. Dis Model Mech. 2015;8: 1349–1360. doi: 10.1242/dmm.021865 26512123

13. Pelster B, Egg M. Hypoxia-inducible transcription factors in fish: expression, function and interconnection with the circadian clock. J Exp Biol. 2018;221: jeb163709. doi: 10.1242/jeb.163709 29973414

14. Hill AJ, Heiden TCK, Heideman W, Peterson RE. Potential Roles of Arnt2 in Zebrafish Larval Development. Zebrafish. 2009;6: 79–91. doi: 10.1089/zeb.2008.0536 19374551

15. Prasch AL, Tanguay RL, Mehta V, Heideman W, Peterson RE. Identification of Zebrafish ARNT1 Homologs: 2,3,7,8-Tetrachlorodibenzo-<em>p</em>-dioxin Toxicity in the Developing Zebrafish Requires ARNT1. Mol Pharmacol. 2006;69: 776 LP– 787. doi: 10.1124/mol.105.016873 16306231

16. Wang WD, Wu JC, Hsu HJ, Kong ZL, Hu CH. Overexpression of a Zebrafish ARNT2-like Factor Represses CYP1A Transcription in ZLE Cells. Mar Biotechnol (NY). 2000;2: 376–386. Available: http://europepmc.org/abstract/MED/10960127 doi: 10.1007/s101260000001 10960127

17. Köblitz L, Fiechtner B, Baus K, Lussnig R, Pelster B. Developmental Expression and Hypoxic Induction of Hypoxia Inducible Transcription Factors in the Zebrafish. PLoS One. 2015;10: e0128938. doi: 10.1371/journal.pone.0128938 26052946

18. Berra E, Roux D, Richard DE, Pouysségur J. Hypoxia-inducible factor-1α (HIF-1α) escapes O 2 -driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2001;2: 615–620. doi: 10.1093/embo-reports/kve130 11454738

19. Moroz E, Carlin S, Dyomina K, Burke S, Thaler HT, Blasberg R, et al. Real-Time Imaging of HIF-1α Stabilization and Degradation. PLoS One. 2009;4: e5077. Available: doi: 10.1371/journal.pone.0005077 19347037

20. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8: 967–75. doi: 10.1038/nrc2540 18987634

21. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123: 3664–3671. doi: 10.1172/JCI67230 23999440

22. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148: 399–408. doi: 10.1016/j.cell.2012.01.021 22304911

23. Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch Eur J Physiol. 2005;450: 363–371. doi: 10.1007/s00424-005-1413-7 16007431

24. Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri MO, et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J. 2005;390: 189–197. doi: 10.1042/BJ20042121 15823097

25. Santhakumar K, Judson EC, Elks PM, McKee S, Elworthy S, Van Rooijen E, et al. A zebrafish model to study and therapeutically manipulate hypoxia signaling in tumorigenesis. Cancer Res. 2012;72: 4017–4027. doi: 10.1158/0008-5472.CAN-11-3148 22665266

26. Kodama T, Shimizu N, Yoshikawa N, Makino Y, Ouchida R, Okamoto K, et al. Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J Biol Chem. 2003;278: 33384–33391. doi: 10.1074/jbc.M302581200 12810720

27. Leonard MO, Godson C, Brady HR, Taylor CT. Potentiation of Glucocorticoid Activity in Hypoxia through Induction of the Glucocorticoid Receptor. J Immunol. 2005;174: 2250–2257. doi: 10.4049/jimmunol.174.4.2250 15699159

28. Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Bürgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun. 2008;372: 336–340. doi: 10.1016/j.bbrc.2008.05.061 18501194

29. Zhang C, Qiang Q, Jiang Y, Hu L3, Ding X, Lu Y, et al. Effects of hypoxia inducible factor-1α on apoptotic inhibition and glucocorticoid receptor downregulation by dexamethasone in AtT-20 cells. BMC Endocr Disord. 2015;15: 1–9. doi: 10.1186/1472-6823-15-1 25572256

30. Zhang P, Fang L, Wu HM, Ding P, Shen QY, Liu R. Down-regulation of GR?? expression and inhibition of its nuclear translocation by hypoxia. Life Sci. 2016;146: 92–99. doi: 10.1016/j.lfs.2015.12.059 26767627

31. Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: Ready, reinforce, repress, resolve, and restore. Trends in Endocrinology and Metabolism. 2013. doi: 10.1016/j.tem.2012.11.005 23312823

32. Nikolaus S, Fölscn U, Schreiber S. Immunopharmacology of 5-aminosalicylic acid and of glucocorticoids in the therapy of inflammatory bowel disease. Hepato-gastroenterology. 2000.

33. Neeck G, Renkawitz R, Eggert M. Molecular aspects of glucocorticoid hormone action in rheumatoid arthritis. Cytokines Cell Mol Ther. 2002;7: 61–69. doi: 10.1080/13684730412331302081 12607796

34. Moghadam-Kia S, Werth VP. Prevention and treatment of systemic glucocorticoid side effects. Int J Dermatol. 2010;49: 239–248. doi: 10.1111/j.1365-4632.2009.04322.x 20465658

35. Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373: 1905–1917. doi: 10.1016/S0140-6736(09)60326-3 19482216

36. Barnes PJ. Glucocorticosteroids: current and future directions. Br J Pharmacol. 2011;163: 29–43. doi: 10.1111/j.1476-5381.2010.01199.x 21198556

37. Gaber T, Schellmann S, Erekul KB, Fangradt M, Tykwinska K, Hahne M, et al. Macrophage Migration Inhibitory Factor Counterregulates Dexamethasone-Mediated Suppression of Hypoxia-Inducible Factor-1α Function and Differentially Influences Human CD4<sup>+</sup> T Cell Proliferation under Hypoxia. J Immunol. 2011;186: 764 LP– 774. doi: 10.4049/jimmunol.0903421 21169549

38. Weger BD, Weger M, Görling B, Schink A, Gobet C, Keime C, et al. Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids. PLOS Genet. 2016;12: e1006512. Available: doi: 10.1371/journal.pgen.1006512 27941970

39. Chatzopoulou A, Roy U, Meijer AH, Alia A, Spaink HP, Schaaf MJM. Transcriptional and metabolic effects of glucocorticoid receptor α and β signaling in zebrafish. Endocrinology. 2015;156: 1757–1769. doi: 10.1210/en.2014-1941 25756310

40. Xie Y, Tolmeijer S, Oskam J, Tonkens T, Meijer AH, Schaaf MJM. Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration. bioRxiv. 2019; 473926. doi: 10.1101/473926

41. Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol. 2008;294: R711–R719. doi: 10.1152/ajpregu.00671.2007 18077507

42. van Rooijen E, Santhakumar K, Logister I, Voest E, Schulte-Merker S, Giles R, et al. A Zebrafish Model for VHL and Hypoxia Signaling. Methods Cell Biol. 2011;105: 163–190. doi: 10.1016/B978-0-12-381320-6.00007-2 21951530

43. Vettori A, Greenald D, Wilson GK, Peron M, Facchinello N, Markham E, et al. Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization. Proc Natl Acad Sci. 2017; 201705338. doi: 10.1073/pnas.1705338114 28851829

44. Langlais D, Couture C, Balsalobre A, Drouin J. The Stat3/GR Interaction Code: Predictive Value of Direct/Indirect DNA Recruitment for Transcription Outcome. Mol Cell. 2012;47: 38–49. doi: 10.1016/j.molcel.2012.04.021 22633955

45. Dittrich A, Khouri C, Sackett SD, Ehlting C, Böhmer O, Albrecht U, et al. Glucocorticoids increase interleukin-6–dependent gene induction by interfering with the expression of the suppressor of cytokine signaling 3 feedback inhibitor. Hepatology. 2012;55: 256–266. doi: 10.1002/hep.24655 21898505

46. Langlais D, Couture C, Balsalobre A, Drouin J. Regulatory Network Analyses Reveal Genome-Wide Potentiation of LIF Signaling by Glucocorticoids and Define an Innate Cell Defense Response. PLOS Genet. 2008;4: e1000224. Available: doi: 10.1371/journal.pgen.1000224 18927629

47. van Rooijen E, Voest EE, Logister I, Korving J, Schwerte T, Schulte-Merker S, et al. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood. 2009;113: 6449 LP– 6460. doi: 10.1182/blood-2008-07-167890 19304954

48. Wu RS, Lam II, Clay H, Duong DN, Deo RC, Coughlin SR. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev Cell. 2018;46: 112–125.e4. doi: 10.1016/j.devcel.2018.06.003 29974860

49. Schaaf MJM, Chatzopoulou A, Spaink HP. The zebrafish as a model system for glucocorticoid receptor research. Comp Biochem Physiol—A Mol Integr Physiol. 2009;153: 75–82. doi: 10.1016/j.cbpa.2008.12.014 19168143

50. Chatzopoulou A, Schoonheim PJ, Torraca V, Meijer AH, Spaink HP, Schaaf MJM. Functional analysis reveals no transcriptional role for the glucocorticoid receptor β-isoform in zebrafish. Mol Cell Endocrinol. 2017;447. doi: 10.1016/j.mce.2017.02.036 28242321

51. Ziv L, Muto A, Schoonheim PJ, Sebastiaan H, Meijsing, Strasser D, et al. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. 2014;18: 681–691. doi: 10.1038/mp.2012.64 22641177

52. Zhang H, Zhang G, Gonzalez FJ, Park S, Cai D. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation. PLOS Biol. 2011;9: e1001112. Available: doi: 10.1371/journal.pbio.1001112 21814490

53. Ramamoorthy S, Cidlowski JA. Corticosteroids. Mechanisms of Action in Health and Disease. Rheumatic Disease Clinics of North America. 2016. doi: 10.1016/j.rdc.2015.08.002 26611548

54. Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, et al. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol. 2018;30: 1–15. doi: 10.1111/jne.12586 29486070

55. Eachus H, Zaucker A, Oakes JA, Griffin A, Weger M, Güran T, et al. Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia. Endocrinology. 2017;158: 4165–4173. doi: 10.1210/en.2017-00549 28938470

56. Muto A, Taylor MR, Suzawa M, Korenbrot JI, Baier H. Glucocorticoid receptor activity regulates light adaptation in the zebrafish retina. Front Neural Circuits. 2013;7: 145. doi: 10.3389/fncir.2013.00145 24068988

57. Montgomery MT, Hogg JP, Roberts DL, Redding SW. The use of glucocorticosteroids to lessen the inflammatory sequelae following third molar surgery. J Oral Maxillofac Surg. 1990;48: 179–187. doi: 10.1016/s0278-2391(10)80207-1 2405122

58. Fromage G. Steroids: what are they and what is their mechanism of action? J Aesthetic Nurs. 2012;1: 198–201. doi: 10.12968/joan.2012.1.4.198

59. Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development. 2016;143: 2025 LP– 2037. doi: 10.1242/dev.134809 27130213

60. Chrousos G, Kino T. Glucocorticoid Signaling in the Cell: Expanding Clinical Implications to Complex Human Behavioral and Somatic Disorders. 2009;100: 130–134. doi: 10.1016/j.pestbp.2011.02.012.Investigations

61. Revollo JR, Cidlowski JA. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci. 2009;1179: 167–178. doi: 10.1111/j.1749-6632.2009.04986.x 19906239

62. Wilson KS, Tucker CS, Al-Dujaili EAS, Holmes MC, Hadoke PWF, Kenyon CJ, et al. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish. J Endocrinol. 2016;230: 125–142. doi: 10.1530/JOE-15-0376 27390302

63. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013;132. doi: 10.1016/j.jaci.2013.09.007 24084075

64. Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 2010;345: 105–120. doi: 10.1007/82_2010_74 20517715

65. Eltzschig HK, Carmeliet P. Hypoxia and Inflammation. N Engl J Med. 2011;364: 656. doi: 10.1056/NEJMra0910283 21323543

66. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41: 518–528. doi: 10.1016/j.immuni.2014.09.008 25367569

67. Tan T, Yu RMK, Wu RSS, Kong RYC. Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish. Gene Regul Syst Bio. 2017;11: 1177625017713193–1177625017713193. doi: 10.1177/1177625017713193 28634424

68. Baker ME, Katsu Y. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Evolution of the mineralocorticoid receptor: sequence, structure and function. J Endocrinol. 2017;234: T1–T16. doi: 10.1530/JOE-16-0661 28468932

69. Cruz SA, Lin C-H, Chao P-L, Hwang P-P. Glucocorticoid Receptor, but Not Mineralocorticoid Receptor, Mediates Cortisol Regulation of Epidermal Ionocyte Development and Ion Transport in Zebrafish (Danio Rerio). PLoS One. 2013;8: e77997. Available: doi: 10.1371/journal.pone.0077997 24205060

70. Lee HB, Schwab TL, Sigafoos AN, Gauerke JL, Krug 2nd RG, Serres MR, et al. Novel zebrafish behavioral assay to identify modifiers of the rapid, nongenomic stress response. Genes Brain Behav. 2019/01/15. 2019;18: e12549–e12549. doi: 10.1111/gbb.12549 30588759

71. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of Embryonic Development of the Zebrafish. Dev Dyn. 1995;203: 253–310. doi: 10.1002/aja.1002030302 8589427

72. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016;44: W272–W276. doi: 10.1093/nar/gkw398 27185894

73. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014/05/26. 2014;42: W401–W407. doi: 10.1093/nar/gku410 24861617

74. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development. 2013;140: 4982–4987. doi: 10.1242/dev.099085 24257628

75. Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3: 59. Available: doi: 10.1038/nprot.2007.514 18193022

76. Muthu V, Eachus H, Ellis P, Brown S, Placzek M. Rx3 and Shh direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus. Development. 2016;143: 2651 LP– 2663. doi: 10.1242/dev.138305 27317806

77. Karlsson J, von Hofsten J, Olsson P-E. Generating Transparent Zebrafish: A Refined Method to Improve Detection of Gene Expression During Embryonic Development. Mar Biotechnol. 2001;3: 522–527. doi: 10.1007/s1012601-0053-4 14961324

78. Kramer BMR, Kolk SM, Berghs CAFM, Tuinhof R, Ubink R, Jenks BG, et al. Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis. Microsc Res Tech. 2001;54: 188–199. doi: 10.1002/jemt.1132 11458401

79. Kurrasch DM, Nevin LM, Wong JS, Baier H, Ingraham HA. Neuroendocrine transcriptional programs adapt dynamically to the supply and demand for neuropeptides as revealed in NSF mutant zebrafish. Neural Dev. 2009;4: 22. doi: 10.1186/1749-8104-4-22 19549326

80. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, et al. Forward Genetic Analysis of Visual Behavior in Zebrafish. PLOS Genet. 2005;1: e66. Available: doi: 10.1371/journal.pgen.0010066 16311625

81. Hatamoto K, Shingyoji C. Cyclical training enhances the melanophore responses of zebrafish to background colours. Pigment Cell Melanoma Res. 2008;21: 397–406. doi: 10.1111/j.1755-148X.2008.00445.x 18476910

82. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25: 402–408. doi: 10.1006/meth.2001.1262 11846609


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková, Ph.D.

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#