#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum


Autoři: Jia Xie aff001;  Ming Sang aff001;  Xiaowen Song aff001;  Sisi Zhang aff001;  Donghun Kim aff002;  Jan A. Veenstra aff004;  Yoonseong Park aff002;  Bin Li aff001
Působiště autorů: Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China aff001;  Department of Entomology, Kansas State University, Manhattan, KS, United States of America aff002;  Department of Applied Biology, Kyungpook National University, Sangju, Korea aff003;  INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France aff004
Vyšlo v časopise: A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. PLoS Genet 16(5): e1008772. doi:10.1371/journal.pgen.1008772
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008772

Souhrn

In the postgenomics era, comparative genomics have advanced the understanding of evolutionary processes of neuropeptidergic signaling systems. The evolutionary origin of many neuropeptidergic signaling systems can be traced date back to early metazoan evolution based on the conserved sequences. Insect parathyroid hormone receptor (iPTHR) was previously described as an ortholog of vertebrate PTHR that has a well-known function in controlling bone remodeling. However, there was no sequence homologous to PTH sequence in insect genomes, leaving the iPTHR as an orphan receptor. Here, we identified the authentic ligand insect PTH (iPTH) for the iPTHR. The taxonomic distribution of iPTHR, which is lacking in Diptera and Lepidoptera, provided a lead for identifying the authentic ligand. We found that a previously described orphan ligand known as PXXXamide (where X is any amino acid) described in the cuttlefish Sepia officinalis has a similar taxonomic distribution pattern as iPTHR. Tests of this peptide, iPTH, in functional reporter assays confirmed the interaction of the ligand-receptor pair. Study of a model beetle, Tribolium castaneum, was used to investigate the function of the iPTH signaling system by RNA interference followed by RNA sequencing and phenotyping. The results suggested that the iPTH system is likely involved in the regulation of cuticle formation that culminates with a phenotype of defects in wing exoskeleton maturation at the time of adult eclosion. Moreover, RNAi of iPTHRs also led to significant reductions in egg numbers and hatching rates after parental RNAi.

Klíčová slova:

Central nervous system – Gene expression – Insects – Parathyroid hormone – RNA interference – Sequence alignment – Vertebrates – chitin


Zdroje

1. Aikins MJ, Schooley DA, Begum K, Detheux M, Beeman RW, Park Y. Vasopressin-like peptide and its receptor function in an indirect diuretic signaling pathway in the red flour beetle. Insect Biochem Mol Biol. 2008;38(7):740–8. doi: 10.1016/j.ibmb.2008.04.006 18549960

2. Beets I, Janssen T, Meelkop E, Temmerman L, Suetens N, Rademakers S, et al. Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans. Science. 2012;338(6106):543–5. doi: 10.1126/science.1226860 23112336

3. Van Sinay E, Mirabeau O, Depuydt G, Van Hiel MB, Peymen K, Watteyne J, et al. Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2017;114(20):E4065–E74. doi: 10.1073/pnas.1617392114 28461507

4. Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, et al. Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res. 2008;18(1):113–22. doi: 10.1101/gr.6714008 18025266

5. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273(5275):663–6. doi: 10.1126/science.273.5275.663 8662561

6. White AD, Fang F, Jean-Alphonse FG, Clark LJ, An HJ, Liu H, et al. Ca(2+) allostery in PTH-receptor signaling. Proc Natl Acad Sci U S A. 2019;116(8):3294–9. doi: 10.1073/pnas.1814670116 30718391

7. On JS, Chow BK, Lee LT. Evolution of parathyroid hormone receptor family and their ligands in vertebrate. Front Endocrinol (Lausanne). 2015;6:28.

8. Pinheiro PL, Cardoso JC, Power DM, Canario AV. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol. 2012;12:110. doi: 10.1186/1471-2148-12-110 22768871

9. Suarez-Bregua P, Cal L, Canestro C, Rotllant J. PTH Reloaded: A New Evolutionary Perspective. Front Physiol. 2017;8:776. doi: 10.3389/fphys.2017.00776 29062283

10. Mirabeau O, Joly JS. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A. 2013;110(22):E2028–37. doi: 10.1073/pnas.1219956110 23671109

11. Jekely G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A. 2013;110(21):8702–7. doi: 10.1073/pnas.1221833110 23637342

12. Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. J Exp Biol. 2018;221(Pt 3).

13. Li CJ, Chen M, Sang M, Liu X, Wu W, Li B. Comparative genomic analysis and evolution of family-B G protein-coupled receptors from six model insect species. Gene. 2013;519(1):1–12. doi: 10.1016/j.gene.2013.01.061 23428791

14. Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol. 2001;2(12):REVIEWS3013. doi: 10.1186/gb-2001-2-12-reviews3013 11790261

15. Tanaka Y, Suetsugu Y, Yamamoto K, Noda H, Shinoda T. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens. Peptides. 2014;53:125–33. doi: 10.1016/j.peptides.2013.07.027 23932938

16. Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguille G, et al. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res. 2016;15(1):48–67. doi: 10.1021/acs.jproteome.5b00463 26632866

17. Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, et al. BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res. 2010;38:D437–D42. doi: 10.1093/nar/gkp807 19820115

18. Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452(7190):949–55. doi: 10.1038/nature06784 18362917

19. Veenstra JA. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem. 2000;43(2):49–63.

20. Donitz J, Schmitt-Engel C, Grossmann D, Gerischer L, Tech M, Schoppmeier M, et al. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids Res. 2015;43(D1):D720–D5.

21. Wilmen A, Goke B, Goke R. The isolated N-terminal extracellular domain of the glucagon-like peptide-1 (GLP)-1 receptor has intrinsic binding activity. FEBS Lett. 1996;398(1):43–7. doi: 10.1016/s0014-5793(96)01214-8 8946950

22. Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M. Mutational analysis of cysteine residues within the extracellular domains of the human vasoactive intestinal peptide (VIP) 1 receptor identifies seven mutants that are defective in VIP binding. Biochem Biophys Res Commun. 1995;211(3):901–8. doi: 10.1006/bbrc.1995.1897 7598720

23. Qi LJ, Leung AT, Xiong Y, Marx KA, Abou-Samra AB. Extracellular cysteines of the corticotropin-releasing factor receptor are critical for ligand interaction. Biochemistry. 1997;36(41):12442–8. doi: 10.1021/bi970997r 9376348

24. Karageorgos V, Venihaki M, Sakellaris S, Pardalos M, Kontakis G, Matsoukas MT, et al. Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones (Athens). 2018;17(1):45–59.

25. Jiang HB, Lkhagva A, Daubnerova I, Chae HS, Simo L, Jung SH, et al. Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. P Natl Acad Sci USA. 2013;110(37):E3526–E34.

26. Kim D, Simo L, Park Y. Molecular characterization of neuropeptide elevenin and two elevenin receptors, IsElevRl and IsElevR2, from the blacklegged tick, Ixodes scapularis. Insect Biochem Molec. 2018;101:66–75.

27. Copenhaver PF, Taghert PH. Neurogenesis in the insect enteric nervous system: Generation of pre-migratory neurons from an epithelial placode Development. 1990;109:17–28.

28. Ruang-Rit K, Park Y. Endocrine system in supernumerary molting of the flour beetle, Tribolium freemani, under crowded conditions. Insect Biochem Mol Biol. 2018;101:76–84. doi: 10.1016/j.ibmb.2018.08.002 30149057

29. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci U S A. 2008;105(18):6650–5. doi: 10.1073/pnas.0800739105 18436642

30. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem Mol Biol. 2008;38(4):467–77. doi: 10.1016/j.ibmb.2007.06.011 18342251

31. Chaudhari SS, Noh MY, Moussian B, Specht CA, Kramer KJ, Beeman RW, et al. Knickkopf and retroactive proteins are required for formation of laminar serosal procuticle during embryonic development of Tribolium castaneum. Insect Biochem Mol Biol. 2015;60:1–6. doi: 10.1016/j.ibmb.2015.02.013 25747009

32. Gorman MJ, Arakane Y. Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum. Insect Biochem Mol Biol. 2010;40(3):267–73. doi: 10.1016/j.ibmb.2010.01.004 20080183

33. Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, et al. Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J Proteome Res. 2012;11(1):269–78. doi: 10.1021/pr2009803 22087475

34. Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol. 2010;40(3):214–27. doi: 10.1016/j.ibmb.2010.01.011 20144715

35. Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S. Gene Families of Cuticular Proteins Analogous to Peritrophins (CPAPs) in Tribolium castaneum Have Diverse Functions. Plos One. 2012;7(11).

36. Wang B, Yang W, McKittrick J, Meyers MA. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci. 2016;76:229–318.

37. Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, Kogure T, et al. Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J. 2004;382(Pt 1):205–13. doi: 10.1042/BJ20040319 15132736

38. Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol. 2008;38(4):452–66. doi: 10.1016/j.ibmb.2007.06.010 18342250

39. Marchal E, Badisco L, Verlinden H, Vandersmissen T, Van Soest S, Van Wielendaele P, et al. Role of the Halloween genes, Spook and Phantom in ecdysteroidogenesis in the desert locust, Schistocerca gregaria. J Insect Physiol. 2011;57(9):1240–8. doi: 10.1016/j.jinsphys.2011.05.009 21708158

40. Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, et al. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol. 2006;298(2):555–70. doi: 10.1016/j.ydbio.2006.07.023 16949568

41. Willingham AT, Keil T. A tissue specific cytochrome P450 required for the structure and function of Drosophila sensory organs. Mech Develop. 2004;121(10):1289–97.

42. Wu L, Jia Q, Zhang X, Zhang X, Liu S, Park Y, et al. CYP303A1 has a conserved function in adult eclosion in Locusta migratoria and Drosophila melanogaster. Insect Biochem Mol Biol. 2019;113:103210. doi: 10.1016/j.ibmb.2019.103210 31422152

43. Hurban P, Thummel CS. Isolation and characterization of fifteen ecdysone-inducible Drosophila genes reveal unexpected complexities in ecdysone regulation. Mol Cell Biol. 1993;13(11):7101–11. doi: 10.1128/mcb.13.11.7101 8413299

44. Frand AR, Russel S, Ruvkun G. Functional genomic analysis of C. elegans molting. PLoS Biol. 2005;3(10):e312. doi: 10.1371/journal.pbio.0030312 16122351

45. Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Develop. 2008;125(11–12):984–95.

46. Baker JD, Truman JW. Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J Exp Biol. 2002;205(17):2555–65.

47. Costa CP, Elias-Neto M, Falcon T, Dallacqua RP, Martins JR, Bitondi MMG. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera. Plos One. 2016;11(12).

48. Diao FQ, White BH. A Novel Approach for Directing Transgene Expression in Drosophila: T2A-Gal4 In-Frame Fusion. Genetics. 2012;190(3):1139–U356. doi: 10.1534/genetics.111.136291 22209908

49. Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, et al. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. P Natl Acad Sci USA. 2005;102(8):2820–5.

50. Xie J, Hu XX, Zhai MF, Yu XJ, Song XW, Gao SS, et al. Characterization and functional analysis of hsp18.3 gene in the red flour beetle, Tribolium castaneum. Insect Sci. 2019;26(2):263–73. doi: 10.1111/1744-7917.12543 28980406

51. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. doi: 10.1006/jmbi.2000.4315 11152613

52. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;Chapter 2:Unit 2 3.

53. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4. doi: 10.1093/molbev/msw054 27004904

54. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C-T method. Nat Protoc. 2008;3(6):1101–8. doi: 10.1038/nprot.2008.73 18546601

55. Song X, Huang F, Liu J, Li C, Gao S, Wu W, et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res. 2017;24(5):445–57. doi: 10.1093/dnares/dsx016 28449092

56. Li C, Lu Y, Ma S, Lu P, Li B, Chen K. Crinkled employs wingless pathway for wing development in Tribolium castaneum. Arch Insect Biochem Physiol. 2018;99(2):e21496. doi: 10.1002/arch.21496 29984841

57. Gao S, Liu X, Liu J, Xiong W, Song X, Wu W, et al. Identification and evolution of latrophilin receptor gene involved in Tribolium castaneum devolopment and female fecundity. Genesis. 2017;55(12).

58. Zhang J, Zhu KY. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochem Mol Biol. 2006;36(9):712–25. doi: 10.1016/j.ibmb.2006.06.002 16935220


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková, Ph.D.

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#