Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion
Autoři:
Eric T. Sumrall aff001; Yang Shen aff001; Anja P. Keller aff001; Jeanine Rismondo aff002; Maria Pavlou aff003; Marcel R. Eugster aff001; Samy Boulos aff001; Olivier Disson aff004; Pierre Thouvenot aff004; Samuel Kilcher aff001; Bernd Wollscheid aff003; Didier Cabanes aff006; Marc Lecuit aff004; Angelika Gründling aff002; Martin J. Loessner aff001
Působiště autorů:
Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
aff001; Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
aff002; Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
aff003; Biology of Infection Unit, Institut Pasteur, Paris, France
aff004; Inserm U1117, Paris, France
aff005; i3S - Instituto de Investigação e Inovação em Saúde; Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
aff006; Paris Descartes University, Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
aff007
Vyšlo v časopise:
Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008032
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008032
Souhrn
The intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns. Here, we outline the genetic determinants required for WTA decoration in serovar 4b L. monocytogenes, and demonstrate the exact nature of the 4b-specific antigen. We show that challenge by bacteriophages selects for surviving clones that feature mutations in genes involved in teichoic acid glycosylation, leading to a loss of galactose from both wall teichoic acid and lipoteichoic acid molecules, and a switch from serovar 4b to 4d. Surprisingly, loss of this galactose decoration not only prevents phage adsorption, but leads to a complete loss of surface-associated Internalin B (InlB),the inability to form actin tails, and a virulence attenuation in vivo. We show that InlB specifically recognizes and attaches to galactosylated teichoic acid polymers, and is secreted upon loss of this modification, leading to a drastically reduced cellular invasiveness. Consequently, these phage-insensitive bacteria are unable to interact with cMet and gC1q-R host cell receptors, which normally trigger cellular uptake upon interaction with InlB. Collectively, we provide detailed mechanistic insight into the dual role of a surface antigen crucial for both phage adsorption and cellular invasiveness, demonstrating a trade-off between phage resistance and virulence in this opportunistic pathogen.
Klíčová slova:
Adsorption – Bacteriophages – Caco-2 cells – Cell walls – Monomers – Virulence factors – Listeria monocytogenes – Listeria
Zdroje
1. Maertens de Noordhout C, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, et al. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(11):1073–82. doi: 10.1016/S1473-3099(14)70870-9 25241232
2. Charlier C, Perrodeau É, Leclercq A, Cazenave B, Pilmis B, Henry B, et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis. 2017;17(5):510–9. doi: 10.1016/S1473-3099(16)30521-7 28139432
3. Orsi RH, Bakker HC de., Wiedmann M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol. 2011;301(2):79–96. doi: 10.1016/j.ijmm.2010.05.002 20708964
4. Kamisango K, Saiki I, Tanio Y, Okumura H, Araki Y, Sekikawa I, et al. Structures and biological activities of peptidoglycans of Listeria monocytogenes and Propionibacterium acnes. J Biochem. 1982;92(1):23–33. doi: 10.1093/oxfordjournals.jbchem.a133918 6811573
5. Brown S, Santa Maria JP, Walker S. Wall Teichoic Acids of Gram-Positive Bacteria. Annu Rev Microbiol [Internet]. 2013;67(1):313–36.
6. Sewell EWC, Brown ED. Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot (Tokyo). 2014;67(1):43–51.
7. Zhu X, Liu D, Singh AK, Drolia R, Bai X, Tenguria S, et al. Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence. Front Microbiol. 2018;9(July):1–18.
8. Shen Y, Boulos S, Sumrall E, Gerber B, Julian-Rodero A, Eugster MR, et al. Structural and functional diversity in Listeria cell wall teichoic acids. J Biol Chem. 2017;292(43):17832–44. doi: 10.1074/jbc.M117.813964 28912268
9. Uchikawa K, Sekikawa I, Azuma I. Structural studies on teichoic acids in cell walls of several serotypes of Listeria monocytogenes. J Biochem. 1986;99(2):315–27. doi: 10.1093/oxfordjournals.jbchem.a135486 3084460
10. Hether NW, Jackson LL. Lipoteichoic acid from Listeria monocytogenes. J Bacteriol. 1983;156(2):809–17. 6415040
11. Campeotto I, Percy MG, MacDonald JT, Forster A, Freemont PS, Grundling A. Structural and Mechanistic Insight into the Listeria monocytogenes Two-Enzyme Lipoteichoic Acid Synthesis System. J Biol Chem. 2014;289(41):0–32.
12. Rismondo J, Percy MG, Gründling A. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J Biol Chem. 2018;293(9):3293–306. doi: 10.1074/jbc.RA117.001614 29343515
13. Neuhaus FC, Baddiley J. A Continuum of Anionic Charge: Structures and Functions of D- Alanyl- Teichoic Acids in Gram- Positive Bacteria. Microbiol Mol Biol Rev. 2003;67(4):686. doi: 10.1128/MMBR.67.4.686-723.2003 14665680
14. Jonquières R. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. 1999;34:902–14. doi: 10.1046/j.1365-2958.1999.01652.x 10594817
15. Percy MG, Karinou E, Webb AJ, Gründling A. Identification of a lipoteichoic acid glycosyltransferase enzyme reveals that GW-domain containing proteins can be retained in the cell wall of Listeria monocytogenes in the absence of lipoteichoic acid or its modifications. J Bacteriol. 2016;198(15):JB.00116-16.
16. Vázquez-boland J a, Kuhn M, Berche P, Chakraborty T, Domi G, González-zorn B, et al. Listeria Pathogenesis and Molecular Virulence Determinants Listeria Pathogenesis and Molecular Virulence Determinants. Clin Microbiol Rev. 2001;14(3):584–640. doi: 10.1128/CMR.14.3.584-640.2001 11432815
17. Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol. 2006;55(6):645–59.
18. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol. 2016;2(2):16185.
19. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet. 2016;48(3):308–13. doi: 10.1038/ng.3501 26829754
20. Promadej N, Fiedler F, Cossart P, Dramsi S, Kathariou S. Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. J Bacteriol. 1999;181(2):418–25. 9882654
21. Cheng Y, Promadej N, Kim JW, Kathariou S. Teichoic acid glycosylation mediated by gtcA is required for phage adsorption and susceptibility of Listeria monocytogenes serotype 4b. Appl Environ Microbiol. 2008;74(5):1653–5. doi: 10.1128/AEM.01773-07 18192405
22. Faith N, Kathariou S, Cheng Y, Promadej N, Neudeck BL, Zhang Q, et al. The role of L.monocytogenes serotype 4b gtcA in Gastrointestinal Listeriosis in A/J Mice. 2009;6(1):39–48. doi: 10.1089/fpd.2008.0154 18991548
23. Spears P a, Suyemoto MM, Palermo AM, Horton JR, Hamrick TS, Havell E A., et al. A Listeria monocytogenes mutant defective in bacteriophage attachment is attenuated in orally inoculated mice and impaired in enterocyte intracellular growth. Infect Immun. 2008;76(9):4046–54. doi: 10.1128/IAI.00283-08 18559424
24. Spears PA, Havell EA, Hamrick TS, Goforth JB, Levine AL, Thomas Abraham S, et al. Listeria monocytogenes Wall Teichoic Acid Decoration in Virulence and Cell-to-Cell Spread. Mol Microbiol [Internet]. 2016;101(5):1–18.
25. Carvalho F, Sousa S, Cabanes D. L-Rhamnosylation of wall teichoic acids promotes efficient surface association of Listeria monocytogenes virulence factors InlB and Ami through interaction with GW domains. Environ Microbiol. 2018;20(11):3941–5951. doi: 10.1111/1462-2920.14351 29984543
26. Carvalho F, Atilano ML, Pombinho R, Covas G, Gallo RL, Filipe SR, et al. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane. PLoS Pathog. 2015;11(5):1–29.
27. Wendlinger G, Loessner MJ, Scherer S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology. 1996;142(4):985–92.
28. Bielmann R, Habann M, Eugster MR, Lurz R, Calendar R, Klumpp J, et al. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology. 2015;477:110–8. doi: 10.1016/j.virol.2014.12.035 25708539
29. Eugster MR, Morax LS, Hüls VJ, Huwiler SG, Leclercq A, Lecuit M, et al. Bacteriophage predation promotes serovar diversification in Listeria monocytogenes. Mol Microbiol. 2015;97(1):33–46. doi: 10.1111/mmi.13009 25825127
30. Klumpp J, Staubli T, Schmitter S, Hupfeld M, Fouts DE, Loessner MJ. Genome Sequences of Three Frequently Used Listeria monocytogenes and Listeria ivanovii Strains. Genome Announc. 2014;2(2):4–5.
31. Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, et al. L isteria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol. 2014;92(1):84–99. doi: 10.1111/mmi.12539 24673724
32. Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, et al. Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol. 2009;191(23):7206–15. doi: 10.1128/JB.01041-09 19783628
33. Loessner MJ, Busse M. Bacteriophage typing of Listeria species. Appl Environ Microbiol. 1990;56(6):1912–8. 2116763
34. Zink R, Loessner MJ. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl Environ Microbiol. 1992;58(1):296–302. 1539980
35. Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P. Entry of Listeria-Monocytogenes Into Hepatocytes Requires Expression of Inlb, a Surface Protein of the Internalin Multigene Family. Mol Microbiol. 1995;16(2):251–61. doi: 10.1111/j.1365-2958.1995.tb02297.x 7565087
36. Shen Y, Naujokas M, Park M, Ireton K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell. 2000;103(3):501–10. doi: 10.1016/s0092-8674(00)00141-0 11081636
37. Kilcher S, Studer P, Muessner C, Klumpp J, Loessner MJ. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci. 2018;115(3):567–72. doi: 10.1073/pnas.1714658115 29298913
38. Lei XH, Fiedler F, Lan Z, Kathariou S. A novel serotype-specific gene cassette (gltA-gltB) is required for expression of teichoic acid-associated surface antigens in Listeria monocytogenes of serotype 4b. J Bacteriol. 2001;183(4):1133–9. doi: 10.1128/JB.183.4.1133-1139.2001 11157924
39. Weidenmaier C, Kokai-Kun JF, Kristian S a, Chanturiya T, Kalbacher H, Gross M, et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med. 2004;10(3):243–5. doi: 10.1038/nm991 14758355
40. Pizarro-cerda J, Ku A. Entry of Listeria monocytogenes in Mammalian Epithelial Cells: an updated view. Cold Spring Harb Perspect Med. 2015;1–18.
41. Vessey C, Wilding J, Folarin N, Hirano, Shinji, Takeichi M, Soutter P, Stamp G, et al. Altered expression and function of E-cadherin in cervical intraepithelial neoplasia and invasive squamous cell carcinoma. J Pathol. 1995;176:151–9. doi: 10.1002/path.1711760208 7636625
42. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 1999;18(14):3956–63. doi: 10.1093/emboj/18.14.3956 10406800
43. Frei AP, Jeon O-Y, Kilcher S, Moest H, Henning LM, Jost C, et al. Direct identification of ligand-receptor interactions on living cells and tissues. Nat Biotechnol. 2012;30(10):997–1001. doi: 10.1038/nbt.2354 22983091
44. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–27. doi: 10.1038/nrmicro2315 20348932
45. Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, et al. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics. 2013;14(1):47.
46. Hupfeld M, Trasanidou D, Ramazzini L, Klumpp J, Loessner MJ, Kilcher S. A functional type II-A CRISPR–Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Res. 2018;46(13):6920–33. doi: 10.1093/nar/gky544 30053228
47. Chassaing D, Auvray F. The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature. FEMS Microbiol Lett. 2007;275:31–7. doi: 10.1111/j.1574-6968.2007.00840.x 17666069
48. Autret N, Dubail I, Trieu-cuot P, Berche P, Charbit A. Identification of New Genes Involved in the Virulence of Listeria monocytogenes by Signature-Tagged Transposon Mutagenesis. Infect Immun. 2001;69(4):2054–65. doi: 10.1128/IAI.69.4.2054-2065.2001 11254558
49. Orndorff PE. Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Curr Genet. 2016;62(4):753–7. doi: 10.1007/s00294-016-0603-5 27113766
50. McCoy JG, Bitto E, Bingman CA, Wesenberg GE, Bannen RM, Kondrashov DA, et al. Structure and Dynamics of UDP-Glucose Pyrophosphorylase from Arabidopsis thaliana with Bound UDP-Glucose and UTP. J Mol Biol. 2007;366(3):830–41. doi: 10.1016/j.jmb.2006.11.059 17178129
51. Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol. 1997;25:285–94. doi: 10.1046/j.1365-2958.1997.4621825.x 9282740
52. Jonquières R, Pizarro-Cerda J, Cossart P. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol. 2001;42(4):955–65. doi: 10.1046/j.1365-2958.2001.02704.x 11737639
53. Fang C, Cao T, Cheng C, Xia Y, Shan Y, Xin Y, et al. Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7. J Med Microbiol. 2015;64(8):818–27. doi: 10.1099/jmm.0.000101 26055558
54. Khelef N, Lecuit M, Bierne H, Cossart P. Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol. 2006;8(3):457–70. doi: 10.1111/j.1462-5822.2005.00634.x 16469057
55. Gessain G., Tsai Y., Travier L., Bonazzi M., Grayo S., Cossart P., et al. (2015). PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. 212, 165–183. doi: 10.1084/jem.20141406 25624443
56. Brockstedt D.G., Giedlin M.A., Leong M.L., Bahjat K.S., Gao Y., Luckett W., et al. (2004) Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci. 2004;101(38):13832–13837. doi: 10.1073/pnas.0406035101 15365184
57. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol [Internet]. 2007;3(9):541–8. doi: 10.1038/nchembio.2007.24 17710100
58. Pucciarelli MG, Bierne H, Portillo FG. The Cell Wall of Listeria monocytogenes and its Role in Pathogenicity. List Monocytogenes Pathog Host Response. 2007;81–110.
59. Klumpp J, Staubli T, Schmitter S, Hupfeld M, Fouts DE, Loessner J. Genome Sequences of Three Frequently Used Listeria monocytogenes and Listeria ivanovii Strains. Genome Announc. 2014;2(2):4–5.
60. Sumrall E, Klumpp J, Shen Y, Loessner MJ. Genome Sequences of Five Nonvirulent Listeria monocytogenes Serovar 4 Strains. Genome Announc. 2016;4(2):e00179–16. doi: 10.1128/genomeA.00179-16 27034489
61. Loessner MJ, Inman RB, Lauer P, Calendar R. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. 2000;35(2):324–40. doi: 10.1046/j.1365-2958.2000.01720.x 10652093
62. Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, et al. The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: A model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol. 2008;190(17):5753–65. doi: 10.1128/JB.00461-08 18567664
63. OIE Terrestrial Manual. LABORATORY METHODOLOGIES FOR BACTERIAL ANTIMICROBIAL SUSCEPTIBILITY TESTING. OIE Ref Lab Antimicrob Resist. 2012
64. Lauer P, Chow MYN, Loessner MJ, Portnoy a, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific pahge integration vectors. J Bacteriol. 2002;184(15):4177–86. doi: 10.1128/JB.184.15.4177-4186.2002 12107135
65. Grundling A, Burrack LS, Bouwer HGA, Higgins DE. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci [Internet]. 2004;101(33):12318–23. doi: 10.1073/pnas.0404924101 15302931
66. Seeliger HPR, Höhne K. Serotyping of Listeria monocytogenes and Related Species. Methods Microbiol. 1979.
67. Braun L., Ohayon H., and Cossart P. The InlB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol. 1998;27(5):1077–1087. doi: 10.1046/j.1365-2958.1998.00750.x 9535096
68. Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, et al. Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol. 2010;76(17):5745–56. doi: 10.1128/AEM.00801-10 20622130
69. Weidenmaier C, Peschel A, Xiong Y-Q, Kristian S a, Dietz K, Yeaman MR, et al. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis. 2005;191(10):1771–7. doi: 10.1086/429692 15838806
70. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell. 1992;68:521–31. doi: 10.1016/0092-8674(92)90188-i 1739966
71. Webb AJ, Karatsa-Dodgson M, Gründling A. Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in listeria monocytogenes. Mol Microbiol. 2009;74(2):299–314. doi: 10.1111/j.1365-2958.2009.06829.x 19682249
72. Grundling A, Schneewind O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci. 2007;104(20):8478–83. doi: 10.1073/pnas.0701821104 17483484
73. Morath S, Geyer A, Hartung T. Brief Definitive Report Structure–Function Relationship of Cytokine Induction by Lipoteichoic Acid from Staphylococcus aureus. J Exp Med. 2001;193(3):393–98. doi: 10.1084/jem.193.3.393 11157059
74. Morath S, Stadelmaier A, Geyer A, Schmidt RR, Hartung T. Brief Definitive Report Synthetic Lipoteichoic Acid from Staphylococcus aureus Is a Potent Stimulus of Cytokine Release. J Exp Med. 2002;195(12):1653–40. doi: 10.1084/jem.20020338
75. Morath S, Geyer A, Spreitzer I, Hermann C, Hartung T. Structural decomposition and heterogeneity of commercial lipoteichoic acid preparations. Infect Immun. 2002;70(2):938–44. doi: 10.1128/iai.70.2.938-944.2002 11796629
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 10
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Alterations in cellular expression in EBV infected epithelial cell lines and tumors
- Correction: A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes
- Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer
- Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling