#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape


Autoři: Abimbola O. Kolawole aff001;  Carmen Mirabelli aff001;  David R. Hill aff002;  Sophia A. Svoboda aff001;  Andrew B. Janowski aff003;  Karla D. Passalacqua aff001;  Benancio N. Rodriguez aff001;  Michael K. Dame aff002;  Pamela Freiden aff004;  Ryan P. Berger aff001;  Diem-lan Vu aff005;  Myra Hosmillo aff006;  Mary X. D. O’Riordan aff001;  Stacey Schultz-Cherry aff004;  Susana Guix aff005;  Jason R. Spence aff002;  David Wang aff009;  Christiane E. Wobus aff001
Působiště autorů: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America aff001;  Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America aff002;  Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America aff003;  St. Jude Children’s Hospital, Memphis, Tennessee, United States of America aff004;  Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain aff005;  Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom aff006;  Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America aff007;  Department of Biomedical Engineering, University of Michigan, Ann arbor, Michigan, United States of America aff008;  Departments of Molecular Microbiology, and Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America aff009
Vyšlo v časopise: Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008057
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008057

Souhrn

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.

Klíčová slova:

Caco-2 cells – Cell differentiation – Gastrointestinal tract – Interferons – RNA extraction – Viral replication – Rotavirus infection – Astrovirus infection


Zdroje

1. Madeley CR, Cosgrove BP. Letter: Viruses in infantile gastroenteritis. Lancet. 1975;2(7925):124. doi: 10.1016/s0140-6736(75)90020-3 49708.

2. Bosch A, Pinto RM, Guix S. Human astroviruses. Clinical microbiology reviews. 2014;27(4):1048–74. doi: 10.1128/CMR.00013-14 25278582; PubMed Central PMCID: PMC4187635.

3. Janowski AB, Bauer IK, Holtz LR, Wang D. Propagation of astrovirus VA1, a neurotropic human astrovirus, in cell culture. Journal of virology. 2017. doi: 10.1128/JVI.00740-17 28701405; PubMed Central PMCID: PMC5599743.

4. Janowski AB, Klein RS, Wang D. Differential In Vitro Infection of Neural Cells by Astroviruses. MBio. 2019;10(4). doi: 10.1128/mBio.01455-19 31289185.

5. Vu DL, Bosch A, Pinto RM, Ribes E, Guix S. Human Astrovirus MLB replication in vitro: persistence in extra-intestinal cell lines. Journal of virology. 2019. doi: 10.1128/JVI.00557-19 31019055.

6. Brinker JP, Blacklow NR, Herrmann JE. Human astrovirus isolation and propagation in multiple cell lines. Archives of virology. 2000;145(9):1847–56. doi: 10.1007/s007050070060 11043945.

7. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. Replication of human noroviruses in stem cell-derived human enteroids. Science (New York, NY. 2016;353(6306):1387–93. doi: 10.1126/science.aaf5211 27562956; PubMed Central PMCID: PMC5305121.

8. Finkbeiner SR, Zeng XL, Utama B, Atmar RL, Shroyer NF, Estes MK. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio. 2012;3(4):e00159–12. doi: 10.1128/mBio.00159-12 22761392; PubMed Central PMCID: PMC3398537.

9. Sato S, Hisaie K, Kurokawa S, Suzuki A, Sakon N, Uchida Y, et al. Human Norovirus Propagation in Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells. Cell Mol Gastroenterol Hepatol. 2018. Epub 2018/12/14. doi: 10.1016/j.jcmgh.2018.11.001 30543870.

10. Dutta D, Clevers H. Organoid culture systems to study host-pathogen interactions. Curr Opin Immunol. 2017;48:15–22. doi: 10.1016/j.coi.2017.07.012 28756233.

11. Yu H, Hasan NM, In JG, Estes MK, Kovbasnjuk O, Zachos NC, et al. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology. Annu Rev Physiol. 2017;79:291–312. doi: 10.1146/annurev-physiol-021115-105211 28192061; PubMed Central PMCID: PMC5549102.

12. Blutt SE, Crawford SE, Ramani S, Zou WY, Estes MK. Engineered Human Gastrointestinal Cultures to Study the Microbiome and Infectious Diseases. Cell Mol Gastroenterol Hepatol. 2018;5(3):241–51. Epub 2018/04/21. doi: 10.1016/j.jcmgh.2017.12.001 29675450; PubMed Central PMCID: PMC5904028.

13. Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science (New York, NY. 2013;340(6137):1190–4. doi: 10.1126/science.1234852 23744940.

14. Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD, van Wijngaarden S, et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells. 2014;32(5):1083–91. doi: 10.1002/stem.1655 24496776.

15. Zou WY, Blutt SE, Crawford SE, Ettayebi K, Zeng XL, Saxena K, et al. Human Intestinal Enteroids: New Models to Study Gastrointestinal Virus Infections. Methods in molecular biology (Clifton, NJ. 2017. doi: 10.1007/7651_2017_1 28361480; PubMed Central PMCID: PMC5752619.

16. Brown JR, Morfopoulou S, Hubb J, Emmett WA, Ip W, Shah D, et al. Astrovirus VA1/HMO-C: an increasingly recognized neurotropic pathogen in immunocompromised patients. Clin Infect Dis. 2015;60(6):881–8. doi: 10.1093/cid/ciu940 25572899; PubMed Central PMCID: PMC4345817.

17. Finkbeiner SR, Li Y, Ruone S, Conrardy C, Gregoricus N, Toney D, et al. Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis. Journal of virology. 2009;83(20):10836–9. doi: 10.1128/JVI.00998-09 19706703; PubMed Central PMCID: PMC2753140.

18. Carroll SS, Koeplinger K, Vavrek M, Zhang NR, Handt L, MacCoss M, et al. Antiviral efficacy upon administration of a HepDirect prodrug of 2'-C-methylcytidine to hepatitis C virus-infected chimpanzees. Antimicrobial agents and chemotherapy. 2011;55(8):3854–60. doi: 10.1128/AAC.01152-10 21628542; PubMed Central PMCID: PMC3147631.

19. Rocha-Pereira J, Jochmans D, Dallmeier K, Leyssen P, Cunha R, Costa I, et al. Inhibition of norovirus replication by the nucleoside analogue 2'-C-methylcytidine. Biochemical and biophysical research communications. 2012;427(4):796–800. doi: 10.1016/j.bbrc.2012.10.003 23063849.

20. Rocha-Pereira J, Jochmans D, Debing Y, Verbeken E, Nascimento MS, Neyts J. The viral polymerase inhibitor 2'-C-methylcytidine inhibits Norwalk virus replication and protects against norovirus-induced diarrhea and mortality in a mouse model. Journal of virology. 2013;87(21):11798–805. doi: 10.1128/JVI.02064-13 23986582; PubMed Central PMCID: PMC3807313.

21. Rocha-Pereira J, Jochmans D, Neyts J. Prophylactic treatment with the nucleoside analogue 2'-C-methylcytidine completely prevents transmission of norovirus. The Journal of antimicrobial chemotherapy. 2015;70(1):190–7. doi: 10.1093/jac/dku363 25228588.

22. Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. Journal of virology. 2015;90(1):43–56. doi: 10.1128/JVI.01930-15 26446608; PubMed Central PMCID: PMC4702582.

23. Sebire NJ, Malone M, Shah N, Anderson G, Gaspar HB, Cubitt WD. Pathology of astrovirus associated diarrhoea in a paediatric bone marrow transplant recipient. J Clin Pathol. 2004;57(9):1001–3. doi: 10.1136/jcp.2004.017178 15333670; PubMed Central PMCID: PMC1770412.

24. Gebert A, Cetin Y. Expression of fucose residues in entero-endocrine cells. Histochem Cell Biol. 1998;109(2):161–5. 9504776.

25. Albers TM, Moore RP. Use of a lectin as an enterocyte-specific cell surface marker for flow cytometric analysis of isolated native small intestinal epithelial cells. Cytometry. 1996;23(1):72–7. doi: 10.1002/(SICI)1097-0320(19960101)23:1<72::AID-CYTO11>3.0.CO;2-T 14650444.

26. Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(16):6110–5. Epub 2004/04/09. doi: 10.1073/pnas.0400969101 15071180; PubMed Central PMCID: PMC395931.

27. Jang WH, Park A, Wang T, Kim CJ, Chang H, Yang BG, et al. Two-photon microscopy of Paneth cells in the small intestine of live mice. Sci Rep. 2018;8(1):14174. doi: 10.1038/s41598-018-32640-7 30242205; PubMed Central PMCID: PMC6155010.

28. van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137(1):15–7. doi: 10.1053/j.gastro.2009.05.035 19450592.

29. Gracz AD, Fuller MK, Wang F, Li L, Stelzner M, Dunn JC, et al. Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells. 2013;31(9):2024–30. doi: 10.1002/stem.1391 23553902; PubMed Central PMCID: PMC3783577.

30. Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol. 2007;17(1):43–52. doi: 10.1016/j.conb.2007.01.011 17275284; PubMed Central PMCID: PMC2820508.

31. Guix S, Perez-Bosque A, Miro L, Moreto M, Bosch A, Pinto RM. Type I interferon response is delayed in human astrovirus infections. PLoS ONE. 2015;10(4):e0123087. doi: 10.1371/journal.pone.0123087 25837699; PubMed Central PMCID: PMC4383485.

32. Marvin SA, Huerta CT, Sharp B, Freiden P, Cline TD, Schultz-Cherry S. Type I Interferon Response Limits Astrovirus Replication and Protects against Increased Barrier Permeability In Vitro and In Vivo. Journal of virology. 2016;90(4):1988–96. doi: 10.1128/JVI.02367-15 26656701; PubMed Central PMCID: PMC4733991.

33. Davies JM, Santaolalla R, von Furstenberg RJ, Henning SJ, Abreu MT. The Viral Mimetic Polyinosinic:Polycytidylic Acid Alters the Growth Characteristics of Small Intestinal and Colonic Crypt Cultures. PLoS One. 2015;10(9):e0138531. Epub 2015/09/29. doi: 10.1371/journal.pone.0138531 26414184; PubMed Central PMCID: PMC4587363.

34. Domingo-Calap P, Segredo-Otero E, Duran-Moreno M, Sanjuan R. Social evolution of innate immunity evasion in a virus. Nat Microbiol. 2019. Epub 2019/03/06. doi: 10.1038/s41564-019-0379-8 30833734.

35. Hare D, Collins S, Cuddington B, Mossman K. The Importance of Physiologically Relevant Cell Lines for Studying Virus-Host Interactions. Viruses. 2016;8(11). doi: 10.3390/v8110297 27809273; PubMed Central PMCID: PMC5127011.

36. Lee S, Baldridge MT. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Front Immunol. 2017;8:749. doi: 10.3389/fimmu.2017.00749 28713375; PubMed Central PMCID: PMC5491552.

37. Pattison MJ, Mackenzie KF, Arthur JS. Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. J Immunol. 2012;189(6):2784–92. Epub 2012/08/21. doi: 10.4049/jimmunol.1200310 22904308; PubMed Central PMCID: PMC3443740.

38. Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol. 2019. Epub 2019/04/03. doi: 10.1038/s41564-019-0421-x 30936491.

39. Willcocks MM, Carter MJ, Laidler FR, Madeley CR. Growth and characterisation of human faecal astrovirus in a continuous cell line. Archives of virology. 1990;113(1–2):73–81. doi: 10.1007/bf01318354 2117433.

40. Moser LA, Carter M, Schultz-Cherry S. Astrovirus increases epithelial barrier permeability independently of viral replication. Journal of virology. 2007;81(21):11937–45. Epub 2007/08/19. doi: 10.1128/JVI.00942-07 17699569; PubMed Central PMCID: PMC2168760.

41. Geigenmuller U, Ginzton NH, Matsui SM. Studies on intracellular processing of the capsid protein of human astrovirus serotype 1 in infected cells. The Journal of general virology. 2002;83(Pt 7):1691–5. doi: 10.1099/0022-1317-83-7-1691 12075088.

42. Mendez E, Munoz-Yanez C, Sanchez-San Martin C, Aguirre-Crespo G, Banos-Lara Mdel R, Gutierrez M, et al. Characterization of human astrovirus cell entry. J Virol. 2014;88(5):2452–60. Epub 2013/12/18. doi: 10.1128/JVI.02908-13 24335315; PubMed Central PMCID: PMC3958088.

43. Janowski AB, Bauer IK, Holtz LR, Wang D. Propagation of Astrovirus VA1, a Neurotropic Human Astrovirus, in Cell Culture. J Virol. 2017;91(19). Epub 2017/07/14. doi: 10.1128/JVI.00740-17 28701405; PubMed Central PMCID: PMC5599743.

44. Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, et al. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol. 1998;153(3):937–44. Epub 1998/09/15. doi: 10.1016/S0002-9440(10)65635-0 9736042; PubMed Central PMCID: PMC1853012.

45. Vu DL, Bosch A, Pinto RM, Guix S. Epidemiology of Classic and Novel Human Astrovirus: Gastroenteritis and Beyond. Viruses. 2017;9(2). doi: 10.3390/v9020033 28218712; PubMed Central PMCID: PMC5332952.

46. Holtz LR, Wylie KM, Sodergren E, Jiang Y, Franz CJ, Weinstock GM, et al. Astrovirus MLB2 viremia in febrile child. Emerg Infect Dis. 2011;17(11):2050–2. Epub 2011/11/22. doi: 10.3201/eid1711.110496 22099095; PubMed Central PMCID: PMC3310569.

47. Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA. Sequence analysis of the human virome in febrile and afebrile children. PLoS One. 2012;7(6):e27735. Epub 2012/06/22. doi: 10.1371/journal.pone.0027735 22719819; PubMed Central PMCID: PMC3374612.

48. Smits SL, van Leeuwen M, van der Eijk AA, Fraaij PL, Escher JC, Simon JH, et al. Human astrovirus infection in a patient with new-onset celiac disease. J Clin Microbiol. 2010;48(9):3416–8. Epub 2010/06/25. doi: 10.1128/JCM.01164-10 20573860; PubMed Central PMCID: PMC2937664.

49. Quan PL, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmukhamedova A, et al. Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg Infect Dis. 2010;16(6):918–25. Epub 2010/05/29. doi: 10.3201/eid1606.091536 20507741; PubMed Central PMCID: PMC4102142.

50. Lanik WE, Mara MA, Mihi B, Coyne CB, Good M. Stem Cell-Derived Models of Viral Infections in the Gastrointestinal Tract. Viruses. 2018;10(3). Epub 2018/03/15. doi: 10.3390/v10030124 29534451; PubMed Central PMCID: PMC5869517.

51. Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. J Virol. 2016;90(1):43–56. Epub 2015/10/09. doi: 10.1128/JVI.01930-15 26446608; PubMed Central PMCID: PMC4702582.

52. Drummond CG, Bolock AM, Ma C, Luke CJ, Good M, Coyne CB. Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(7):1672–7. doi: 10.1073/pnas.1617363114 28137842; PubMed Central PMCID: PMC5320971.

53. Holly MK, Smith JG. Adenovirus Infection of Human Enteroids Reveals Interferon Sensitivity and Preferential Infection of Goblet Cells. J Virol. 2018;92(9). Epub 2018/02/23. doi: 10.1128/JVI.00250-18 29467318; PubMed Central PMCID: PMC5899204.

54. Carroll TD, Newton IP, Chen Y, Blow JJ, Nathke I. Lgr5(+) intestinal stem cells reside in an unlicensed G1 phase. J Cell Biol. 2018;217(5):1667–85. Epub 2018/03/31. doi: 10.1083/jcb.201708023 29599208; PubMed Central PMCID: PMC5940300.

55. Gray EW, Angus KW, Snodgrass DR. Ultrastructure of the small intestine in astrovirus-infected lambs. The Journal of general virology. 1980;49(1):71–82. doi: 10.1099/0022-1317-49-1-71 6775050.

56. Snodgrass DR, Angus KW, Gray EW, Menzies JD, Paul G. Pathogenesis of diarrhoea caused by astrovirus infections in lambs. Archives of virology. 1979;60(3–4):217–26. doi: 10.1007/bf01317493 116623.

57. Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, et al. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS pathogens. 2011;7(7):e1002115. doi: 10.1371/journal.ppat.1002115 21779163; PubMed Central PMCID: PMC3136449.

58. Hernandez PP, Mahlakoiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-lambda and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16(7):698–707. Epub 2015/05/26. doi: 10.1038/ni.3180 26006013; PubMed Central PMCID: PMC4589158.

59. Mahlakoiv T, Hernandez P, Gronke K, Diefenbach A, Staeheli P. Leukocyte-derived IFN-alpha/beta and epithelial IFN-lambda constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog. 2015;11(4):e1004782. Epub 2015/04/08. doi: 10.1371/journal.ppat.1004782 25849543; PubMed Central PMCID: PMC4388470.

60. Nice TJ, Baldridge MT, McCune BT, Norman JM, Lazear HM, Artyomov M, et al. Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science (New York, NY. 2015;347(6219):269–73. doi: 10.1126/science.1258100 25431489; PubMed Central PMCID: PMC4398891.

61. Marvin SA. The Immune Response to Astrovirus Infection. Viruses. 2016;9(1). doi: 10.3390/v9010001 28042824; PubMed Central PMCID: PMC5294970.

62. Ingle H, Lee S, Ai T, Orvedahl A, Rodgers R, Zhao G, et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-lambda. Nat Microbiol. 2019. doi: 10.1038/s41564-019-0416-7 30936486.

63. Ioannidis I, Ye F, McNally B, Willette M, Flano E. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol. 2013;87(6):3261–70. Epub 2013/01/11. doi: 10.1128/JVI.01956-12 23302870; PubMed Central PMCID: PMC3592129.

64. Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, Albert ML, et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog. 2013;9(11):e1003773. Epub 2013/11/28. doi: 10.1371/journal.ppat.1003773 24278020; PubMed Central PMCID: PMC3836735.

65. Saxena K, Simon LM, Zeng XL, Blutt SE, Crawford SE, Sastri NP, et al. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(4):E570–E9. doi: 10.1073/pnas.1615422114 28069942; PubMed Central PMCID: PMC5278484.

66. Sen A, Rothenberg ME, Mukherjee G, Feng N, Kalisky T, Nair N, et al. Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution. Proc Natl Acad Sci U S A. 2012;109(50):20667–72. Epub 2012/11/29. doi: 10.1073/pnas.1212188109 23188796; PubMed Central PMCID: PMC3528539.

67. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15(8):717–26. Epub 2014/06/24. doi: 10.1038/ni.2915 24952503; PubMed Central PMCID: PMC4106986.

68. Bennett SM, Jiang M, Imperiale MJ. Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. Journal of virology. 2013;87(16):8843–52. doi: 10.1128/JVI.00664-13 23740996; PubMed Central PMCID: PMC3754070.

69. Dobson-Belaire WN, Cochrane A, Ostrowski MA, Gray-Owen SD. Differential response of primary and immortalized CD4+ T cells to Neisseria gonorrhoeae-induced cytokines determines the effect on HIV-1 replication. PLoS ONE. 2011;6(4):e18133. doi: 10.1371/journal.pone.0018133 21526113; PubMed Central PMCID: PMC3081295.

70. Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ, Ploss A, et al. Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol. 2010;28(2):167–71. doi: 10.1038/nbt.1604 20118917; PubMed Central PMCID: PMC2828266.

71. Dame MK, Attili D, McClintock SD, Dedhia PH, Ouillette P, Hardt O, et al. Identification, isolation and characterization of human LGR5-positive colon adenoma cells. Development. 2018;145(6). Epub 2018/02/23. doi: 10.1242/dev.153049 29467240.

72. Tsai YH, Czerwinski M, Wu A, Dame MK, Attili D, Hill E, et al. A Method for Cryogenic Preservation of Human Biopsy Specimens and Subsequent Organoid Culture. Cell Mol Gastroenterol Hepatol. 2018;6(2):218–22 e7. doi: 10.1016/j.jcmgh.2018.04.008 30105282; PubMed Central PMCID: PMC6085494.

73. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 2011;141(5):1762–72. Epub 2011/09/06. S0016-5085(11)01108-5 doi: 10.1053/j.gastro.2011.07.050 21889923.

74. Miyoshi H, Stappenbeck TS. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protocols. 2013;8(12):2471–82. doi: 10.1038/nprot.2013.153 24232249

75. Perry JW, Ahmed M, Chang KO, Donato NJ, Showalter HD, Wobus CE. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response. PLoS pathogens. 2012;8(7):e1002783. doi: 10.1371/journal.ppat.1002783 22792064; PubMed Central PMCID: PMC3390402.

76. Hwang S, Alhatlani B, Arias A, Caddy SL, Christodoulou C, Cunha JB, et al. Murine norovirus: propagation, quantification, and genetic manipulation. Curr Protoc Microbiol. 2014;33:15K 2 1–61. doi: 10.1002/9780471729259.mc15k02s33 24789596; PubMed Central PMCID: PMC4074558.

77. Kolawole AO, Xia C, Li M, Gamez M, Yu C, Rippinger CM, et al. Newly isolated mAbs broaden the neutralizing epitope in murine norovirus. The Journal of general virology. 2014;95(Pt 9):1958–68. doi: 10.1099/vir.0.066753-0 24899153; PubMed Central PMCID: PMC4135088.

78. Kolawole AO, Rocha-Pereira J, Elftman MD, Neyts J, Wobus CE. Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model. Antiviral Res. 2016;132:46–9. doi: 10.1016/j.antiviral.2016.05.011 27210811; PubMed Central PMCID: PMC4980194.

79. Kolawole AO, Gonzalez-Hernandez MB, Turula H, Yu C, Elftman MD, Wobus CE. Oral Norovirus Infection Is Blocked in Mice Lacking Peyer's Patches and Mature M Cells. Journal of virology. 2015;90(3):1499–506. doi: 10.1128/JVI.02872-15 26581993; PubMed Central PMCID: PMC4719605.

80. Passalacqua KD, Lu J, Goodfellow I, Kolawole AO, Arche JR, Maddox RJ, et al. Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus. MBio. 2019;10(2). doi: 10.1128/mBio.02175-18 30862747; PubMed Central PMCID: PMC6414699.

81. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7. Epub 2016/04/05. doi: 10.1038/nbt.3519 27043002.

82. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 25516281; PubMed Central PMCID: PMC4302049.

83. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. Epub 2005/10/04. doi: 10.1073/pnas.0506580102 16199517; PubMed Central PMCID: PMC1239896.

84. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. Epub 2012/03/30. doi: 10.1089/omi.2011.0118 22455463; PubMed Central PMCID: PMC3339379.

85. Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12(2):477–9. Epub 2015/12/15. doi: 10.1039/c5mb00663e 26661513.

86. Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049–56. Epub 2014/11/28. doi: 10.1093/nar/gku1179 25428369; PubMed Central PMCID: PMC4383973.

87. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome Pathway Knowledgebase. Nucleic acids research. 2018;46(D1):D649–D55. doi: 10.1093/nar/gkx1132 29145629; PubMed Central PMCID: PMC5753187.

88. Stallman RM. Emacs: the extensible, customizable self-documenting display editor. Rep No: AI-M-519A. ISTA1601567.

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#