Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission
Autoři:
Mohammad Zeeshan aff001; Fiona Shilliday aff002; Tianyang Liu aff002; Steven Abel aff003; Tobias Mourier aff004; David J. P. Ferguson aff005; Edward Rea aff001; Rebecca R. Stanway aff007; Magali Roques aff007; Desiree Williams aff003; Emilie Daniel aff001; Declan Brady aff001; Anthony J. Roberts aff002; Anthony A. Holder aff008; Arnab Pain aff004; Karine G. Le Roch aff003; Carolyn A. Moores aff002; Rita Tewari aff001
Působiště autorů:
School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
aff001; Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
aff002; Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
aff003; Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Kingdom of Saudi Arabia
aff004; Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
aff005; Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
aff006; Institute of Cell Biology, University of Bern, Bern, Switzerland
aff007; Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
aff008; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Sapporo, Japan
aff009
Vyšlo v časopise:
Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008048
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008048
Souhrn
Kinesin-8 proteins are microtubule motors that are often involved in regulation of mitotic spindle length and chromosome alignment. They move towards the plus ends of spindle microtubules and regulate the dynamics of these ends due, at least in some species, to their microtubule depolymerization activity. Plasmodium spp. exhibit an atypical endomitotic cell division in which chromosome condensation and spindle dynamics in the different proliferative stages are not well understood. Genome-wide shared orthology analysis of Plasmodium spp. revealed the presence of two kinesin-8 motor proteins, kinesin-8X and kinesin-8B. Here we studied the biochemical properties of kinesin-8X and its role in parasite proliferation. In vitro, kinesin-8X has motility and depolymerization activities like other kinesin-8 motors. To understand the role of Plasmodium kinesin-8X in cell division, we used fluorescence-tagging and live cell imaging to define its location, and gene targeting to analyse its function, during all proliferative stages of the rodent malaria parasite P. berghei life cycle. The results revealed a spatio-temporal involvement of kinesin-8X in spindle dynamics and an association with both mitotic and meiotic spindles and the putative microtubule organising centre (MTOC). Deletion of the kinesin-8X gene revealed a defect in oocyst development, confirmed by ultrastructural studies, suggesting that this protein is required for oocyst development and sporogony. Transcriptome analysis of Δkinesin-8X gametocytes revealed modulated expression of genes involved mainly in microtubule-based processes, chromosome organisation and the regulation of gene expression, supporting a role for kinesin-8X in cell division. Kinesin-8X is thus required for parasite proliferation within the mosquito and for transmission to the vertebrate host.
Klíčová slova:
Gametocytes – Kinesins – Motor proteins – Oocysts – Parasitic diseases – Plasmodium – Parasitic life cycles – Sporozoites
Zdroje
1. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. A standardized kinesin nomenclature. J Cell Biol. 2004;167(1):19–22. doi: 10.1083/jcb.200408113 15479732; PubMed Central PMCID: PMC2041940.
2. Vicente JJ, Wordeman L. Mitosis, microtubule dynamics and the evolution of kinesins. Exp Cell Res. 2015;334(1):61–9. doi: 10.1016/j.yexcr.2015.02.010 25708751; PubMed Central PMCID: PMC4433793.
3. Wickstead B, Gull K, Richards TA. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol Biol. 2010;10:110. doi: 10.1186/1471-2148-10-110 20423470.
4. Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol. 2009;10(11):765–77. doi: 10.1038/nrm2782 19851335.
5. Prosser SL, Pelletier L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol. 2017;18(3):187–201. doi: 10.1038/nrm.2016.162 28174430.
6. Wittmann T, Hyman A, Desai A. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol. 2001;3(1):E28–34. doi: 10.1038/35050669 11146647.
7. Kushida Y, Takaine M, Nakano K, Sugai T, Vasudevan KK, Guha M, et al. Kinesin-14 is Important for Chromosome Segregation During Mitosis and Meiosis in the Ciliate Tetrahymena thermophila. J Eukaryot Microbiol. 2017;64(3):293–307. doi: 10.1111/jeu.12366 27595611.
8. Bascom-Slack CA, Dawson DS. The yeast motor protein, Kar3p, is essential for meiosis I. J Cell Biol. 1997;139(2):459–67. doi: 10.1083/jcb.139.2.459 9334348; PubMed Central PMCID: PMC2139793.
9. Camlin NJ, McLaughlin EA, Holt JE. Motoring through: the role of kinesin superfamily proteins in female meiosis. Hum Reprod Update. 2017;23(4):409–20. doi: 10.1093/humupd/dmx010 28431155.
10. Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, et al. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol. 2007;17(6):488–98. doi: 10.1016/j.cub.2007.02.036 17346968.
11. DeZwaan TM, Ellingson E, Pellman D, Roof DM. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol. 1997;138(5):1023–40. doi: 10.1083/jcb.138.5.1023 9281581; PubMed Central PMCID: PMC2136764.
12. Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell. 2008;14(2):252–62. doi: 10.1016/j.devcel.2007.11.014 18267093; PubMed Central PMCID: PMC2267861.
13. Savoian MS, Gatt MK, Riparbelli MG, Callaini G, Glover DM. Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J Cell Sci. 2004;117(Pt 16):3669–77. doi: 10.1242/jcs.01213 15252134.
14. Mary H, Fouchard J, Gay G, Reyes C, Gauthier T, Gruget C, et al. Fission yeast kinesin-8 controls chromosome congression independently of oscillations. J Cell Sci. 2015;128(20):3720–30. doi: 10.1242/jcs.160465 26359299.
15. Straight AF, Sedat JW, Murray AW. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J Cell Biol. 1998;143(3):687–94. doi: 10.1083/jcb.143.3.687 9813090; PubMed Central PMCID: PMC2148141.
16. Savoian MS, Glover DM. Drosophila Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length. J Cell Sci. 2010;123(Pt 5):767–76. doi: 10.1242/jcs.055905 20144994.
17. Tran PT, Doye V, Chang F, Inoue S. Microtubule-dependent nuclear positioning and nuclear-dependent septum positioning in the fission yeast Schizosaccharomyces [correction of Saccharomyces] pombe. Biol Bull. 2000;199(2):205–6. doi: 10.2307/1542900 11081738.
18. West RR, Malmstrom T, Troxell CL, McIntosh JR. Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol Biol Cell. 2001;12(12):3919–32. doi: 10.1091/mbc.12.12.3919 11739790; PubMed Central PMCID: PMC60765.
19. Daga RR, Yonetani A, Chang F. Asymmetric microtubule pushing forces in nuclear centering. Curr Biol. 2006;16(15):1544–50. doi: 10.1016/j.cub.2006.06.026 16890530.
20. Gupta ML Jr., Carvalho P, Roof DM, Pellman D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol. 2006;8(9):913–23. doi: 10.1038/ncb1457 16906148.
21. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol. 2006;8(9):957–62. doi: 10.1038/ncb1462 16906145.
22. Wang D, Nitta R, Morikawa M, Yajima H, Inoue S, Shigematsu H, et al. Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A. Elife. 2016;5. doi: 10.7554/eLife.18101 27690357.
23. WHO. World Malaria Report. 2018.
24. Sinden RE. Mitosis and meiosis in malarial parasites. Acta Leiden. 1991;60(1):19–27. 1820709.
25. Francia ME, Striepen B. Cell division in apicomplexan parasites. Nat Rev Microbiol. 2014;12(2):125–36. doi: 10.1038/nrmicro3184 24384598.
26. Arnot DE, Ronander E, Bengtsson DC. The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony. Int J Parasitol. 2011;41(1):71–80. doi: 10.1016/j.ijpara.2010.07.012 20816844.
27. Sinden RE. Sexual development of malarial parasites. Adv Parasitol. 1983;22:153–216. 6141715.
28. Billker O, Shaw MK, Margos G, Sinden RE. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology. 1997;115 (Pt 1):1–7. doi: 10.1017/s0031182097008895 9280891.
29. Sinden RE, Canning EU, Bray RS, Smalley ME. Gametocyte and gamete doi: 10.1098/rspb.1978.0051 27809 in Plasmodium falciparum. Proc R Soc Lond B Biol Sci. 1978;201(1145):375–99. 27809.
30. Guttery DS, Roques M, Holder AA, Tewari R. Commit and Transmit: Molecular Players in Plasmodium Sexual Development and Zygote Differentiation. Trends Parasitol. 2015;31(12):676–85. doi: 10.1016/j.pt.2015.08.002 26440790.
31. Schrevel J, Asfaux-Foucher G, Bafort JM. [Ultrastructural study of multiple mitoses during sporogony of Plasmodium b. berghei]. J Ultrastruct Res. 1977;59(3):332–50. doi: 10.1016/s0022-5320(77)90043-0 864828.
32. Sinden RE. Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology. 1982;84(1):1–11. doi: 10.1017/s003118200005160x 7038594.
33. Roques M, Stanway RR, Rea EI, Markus R, Brady D, Holder AA, et al. Plasmodium centrin PbCEN-4 localizes to the putative MTOC and is dispensable for malaria parasite proliferation. Biol Open. 2019;8(1). doi: 10.1242/bio.036822 30541825.
34. Gerald N, Mahajan B, Kumar S. Mitosis in the human malaria parasite Plasmodium falciparum. Eukaryot Cell. 2011;10(4):474–82. doi: 10.1128/EC.00314-10 21317311; PubMed Central PMCID: PMC3127633.
35. Liu L, Richard J, Kim S, Wojcik EJ. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5. J Biol Chem. 2014;289(23):16601–14. doi: 10.1074/jbc.M114.551408 24737313; PubMed Central PMCID: PMC4047425.
36. Otto TD, Bohme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 2014;12:86. doi: 10.1186/s12915-014-0086-0 25359557; PubMed Central PMCID: PMC4242472.
37. Yeoh LM, Goodman CD, Mollard V, McFadden GI, Ralph SA. Comparative transcriptomics of female and male gametocytes in Plasmodium berghei and the evolution of sex in alveolates. BMC Genomics. 2017;18(1):734. doi: 10.1186/s12864-017-4100-0 28923023; PubMed Central PMCID: PMC5604118.
38. Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature. 1998;392(6673):289–92. doi: 10.1038/32667 9521324.
39. Janse CJ, Mons B, Rouwenhorst RJ, Van der Klooster PF, Overdulve JP, Van der Kaay HJ. In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes. Parasitology. 1985;91 (Pt 1):19–29. doi: 10.1017/s0031182000056481 2863802.
40. Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, et al. Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell. 2017;170(2):260–72 e8. doi: 10.1016/j.cell.2017.06.030 28708996; PubMed Central PMCID: PMC5509546.
41. Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. Elife. 2018;7. doi: 10.7554/eLife.33105 29580379; PubMed Central PMCID: PMC5871331.
42. Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol. 2010;170(2):65–73. doi: 10.1016/j.molbiopara.2009.12.010 20045030.
43. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science. 2005;307(5706):82–6. doi: 10.1126/science.1103717 15637271.
44. Messin LJ, Millar JB. Role and regulation of kinesin-8 motors through the cell cycle. Syst Synth Biol. 2014;8(3):205–13. doi: 10.1007/s11693-014-9140-z 25136382; PubMed Central PMCID: PMC4127180.
45. Su X, Arellano-Santoyo H, Portran D, Gaillard J, Vantard M, Thery M, et al. Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nat Cell Biol. 2013;15(8):948–57. doi: 10.1038/ncb2801 23851487; PubMed Central PMCID: PMC3767134.
46. Shrestha S, Hazelbaker M, Yount AL, Walczak CE. Emerging Insights into the Function of Kinesin-8 Proteins in Microtubule Length Regulation. Biomolecules. 2018;9(1). doi: 10.3390/biom9010001 30577528; PubMed Central PMCID: PMC6359247.
47. Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell. 2016;27(22):3490–514. doi: 10.1091/mbc.E15-07-0505 27146110; PubMed Central PMCID: PMC5221583.
48. Locke J, Joseph AP, Pena A, Mockel MM, Mayer TU, Topf M, et al. Structural basis of human kinesin-8 function and inhibition. Proc Natl Acad Sci U S A. 2017;114(45):E9539–E48. doi: 10.1073/pnas.1712169114 29078367; PubMed Central PMCID: PMC5692573.
49. Unsworth A, Masuda H, Dhut S, Toda T. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. Mol Biol Cell. 2008;19(12):5104–15. doi: 10.1091/mbc.E08-02-0224 18799626; PubMed Central PMCID: PMC2592636.
50. Tytell JD, Sorger PK. Analysis of kinesin motor function at budding yeast kinetochores. J Cell Biol. 2006;172(6):861–74. doi: 10.1083/jcb.200509101 16533946; PubMed Central PMCID: PMC2063730.
51. Goshima G, Vale RD. Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol Biol Cell. 2005;16(8):3896–907. doi: 10.1091/mbc.E05-02-0118 15958489; PubMed Central PMCID: PMC1182325.
52. Sinden RE, Hartley RH. Identification of the meiotic division of malarial parasites. J Protozool. 1985;32(4):742–4. doi: 10.1111/j.1550-7408.1985.tb03113.x 3906103.
53. Sinden RE, Hartley RH, Winger L. The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology. 1985;91 (Pt 2):227–44. doi: 10.1017/s0031182000057334 3906519.
54. Canning EU, Sinden RE. The organization of the ookinete and observations on nuclear division in oocysts of Plasmodium berghei. Parasitology. 1973;67(1):29–40. doi: 10.1017/s0031182000046266 4579580.
55. Sinden RE, Strong K. An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae. Trans R Soc Trop Med Hyg. 1978;72(5):477–91. doi: 10.1016/0035-9203(78)90167-0 364785.
56. Walczak CE, Mitchison TJ, Desai A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell. 1996;84(1):37–47. doi: 10.1016/s0092-8674(00)80991-5 8548824.
57. Moores CA, Milligan RA. Lucky 13-microtubule depolymerisation by kinesin-13 motors. J Cell Sci. 2006;119(Pt 19):3905–13. doi: 10.1242/jcs.03224 16988025.
58. Moores CA, Yu M, Guo J, Beraud C, Sakowicz R, Milligan RA. A mechanism for microtubule depolymerization by KinI kinesins. Mol Cell. 2002;9(4):903–9. doi: 10.1016/s1097-2765(02)00503-8 11983180.
59. Roques M, Wall RJ, Douglass AP, Ramaprasad A, Ferguson DJ, Kaindama ML, et al. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes. PLoS Pathog. 2015;11(11):e1005273. doi: 10.1371/journal.ppat.1005273 26565797; PubMed Central PMCID: PMC4643991.
60. Bushell ES, Ecker A, Schlegelmilch T, Goulding D, Dougan G, Sinden RE, et al. Paternal effect of the nuclear formin-like protein MISFIT on Plasmodium development in the mosquito vector. PLoS Pathog. 2009;5(8):e1000539. doi: 10.1371/journal.ppat.1000539 19662167; PubMed Central PMCID: PMC2715856.
61. Tewari R, Straschil U, Bateman A, Bohme U, Cherevach I, Gong P, et al. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe. 2010;8(4):377–87. doi: 10.1016/j.chom.2010.09.006 20951971; PubMed Central PMCID: PMC2977076.
62. Mlambo G, Coppens I, Kumar N. Aberrant sporogonic development of Dmc1 (a meiotic recombinase) deficient Plasmodium berghei parasites. PLoS One. 2012;7(12):e52480. doi: 10.1371/journal.pone.0052480 23285059; PubMed Central PMCID: PMC3528682.
63. Guttery DS, Poulin B, Ramaprasad A, Wall RJ, Ferguson DJ, Brady D, et al. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe. 2014;16(1):128–40. doi: 10.1016/j.chom.2014.05.020 25011111; PubMed Central PMCID: PMC4094981.
64. Deligianni E, Silmon de Monerri NC, McMillan PJ, Bertuccini L, Superti F, Manola M, et al. Essential role of Plasmodium perforin-like protein 4 in ookinete midgut passage. PLoS One. 2018;13(8):e0201651. doi: 10.1371/journal.pone.0201651 30102727; PubMed Central PMCID: PMC6089593.
65. Zeeshan M, Ferguson DJ, Abel S, Burrrell A, Rea E, Brady D, et al. Kinesin-8B controls basal body function and flagellum formation and is key to malaria transmission. Life Sci Alliance. 2019;2(4). doi: 10.26508/lsa.201900488 31409625.
66. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–D32. doi: 10.1093/nar/gky995 30357350; PubMed Central PMCID: PMC6324024.
67. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010 23329690; PubMed Central PMCID: PMC3603318.
68. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. doi: 10.1093/bioinformatics/btp348 19505945; PubMed Central PMCID: PMC2712344.
69. Hackney DD, Jiang W. Assays for kinesin microtubule-stimulated ATPase activity. Methods Mol Biol. 2001;164:65–71. 11217616.
70. Guttery DS, Poulin B, Ferguson DJ, Szoor B, Wickstead B, Carroll PL, et al. A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog. 2012;8(9):e1002948. doi: 10.1371/journal.ppat.1002948 23028336; PubMed Central PMCID: PMC3447748.
71. Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc. 2006;1(1):346–56. doi: 10.1038/nprot.2006.53 17406255.
72. Beetsma AL, van de Wiel TJ, Sauerwein RW, Eling WM. Plasmodium berghei ANKA: purification of large numbers of infectious gametocytes. Exp Parasitol. 1998;88(1):69–72. doi: 10.1006/expr.1998.4203 9501851.
73. Saini E, Zeeshan M, Brady D, Pandey R, Kaiser G, Koreny L, et al. Photosensitized INA-Labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for Plasmodium parasite development. Sci Rep. 2017;7(1):15577. doi: 10.1038/s41598-017-15781-z 29138437; PubMed Central PMCID: PMC5686188.
74. Volkmann K, Pfander C, Burstroem C, Ahras M, Goulding D, Rayner JC, et al. The alveolin IMC1h is required for normal ookinete and sporozoite motility behaviour and host colonisation in Plasmodium berghei. PLoS One. 2012;7(7):e41409. doi: 10.1371/journal.pone.0041409 22844474; PubMed Central PMCID: PMC3402405.
75. Tewari R, Dorin D, Moon R, Doerig C, Billker O. An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Mol Microbiol. 2005;58(5):1253–63. doi: 10.1111/j.1365-2958.2005.04793.x 16313614.
76. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. doi: 10.1093/sysbio/syq010 20525638.
77. Lefort V, Longueville JE, Gascuel O. SMS: Smart Model Selection in PhyML. Mol Biol Evol. 2017;34(9):2422–4. doi: 10.1093/molbev/msx149 28472384; PubMed Central PMCID: PMC5850602.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 10
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Alterations in cellular expression in EBV infected epithelial cell lines and tumors
- Correction: A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes
- Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer
- Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling