#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The association between long-term exposure to low-level PM2.5 and mortality in the state of Queensland, Australia: A modelling study with the difference-in-differences approach


Autoři: Wenhua Yu aff001;  Yuming Guo aff001;  Liuhua Shi aff003;  Shanshan Li aff002
Působiště autorů: Department of Epidemiology, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China aff001;  Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia aff002;  Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America aff003
Vyšlo v časopise: The association between long-term exposure to low-level PM2.5 and mortality in the state of Queensland, Australia: A modelling study with the difference-in-differences approach. PLoS Med 17(6): e32767. doi:10.1371/journal.pmed.1003141
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003141

Souhrn

Background

To date, few studies have investigated the causal relationship between mortality and long-term exposure to a low level of fine particulate matter (PM2.5) concentrations.

Methods and findings

We studied 242,320 registered deaths in Queensland between January 1, 1998, and December 31, 2013, with satellite-retrieved annual average PM2.5 concentrations to each postcode. A variant of difference-in-differences (DID) approach was used to investigate the association of long-term PM2.5 exposure with total mortality and cause-specific (cardiovascular, respiratory, and non-accidental) mortality. We observed 217,510 non-accidental deaths, 133,661 cardiovascular deaths, and 30,748 respiratory deaths in Queensland during the study period. The annual average PM2.5 concentrations ranged from 1.6 to 9.0 μg/m3, which were well below the current World Health Organization (WHO) annual standard (10 μg/m3). Long-term exposure to PM2.5 was associated with increased total mortality and cause-specific mortality. For each 1 μg/m3 increase in annual PM2.5, we found a 2.02% (95% CI 1.41%–2.63%; p < 0.01) increase in total mortality. Higher effect estimates were observed in Brisbane than those in Queensland for all types of mortality. A major limitation of our study is that the DID design is under the assumption that no predictors other than seasonal temperature exhibit different spatial-temporal variations in relation to PM2.5 exposure. However, if this assumption is violated (e.g., socioeconomic status [SES] and outdoor physical activities), the DID design is still subject to confounding.

Conclusions

Long-term exposure to PM2.5 was associated with total, non-accidental, cardiovascular, and respiratory mortality in Queensland, Australia, where PM2.5 levels were measured well below the WHO air quality standard.

Klíčová slova:

Age groups – Air quality – Census – Death rates – Observational studies – Particulates – Physical activity – Socioeconomic aspects of health


Zdroje

1. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082): 1907–18. doi: 10.1016/S0140-6736(17)30505-6 28408086

2. Wang Y, Kloog I, Coull BA, Kosheleva A, Zanobetti A, Schwartz JD. Estimating Causal Effects of Long-Term PM2.5 Exposure on Mortality in New Jersey. Environ Health Perspect. 2016;124(8): 1182–8. doi: 10.1289/ehp.1409671 27082965

3. Makar M, Antonelli J, Di Q, Cutler D, Schwartz J, Dominici F. Estimating the Causal Effect of Low Levels of Fine Particulate Matter on Hospitalization. Epidemiology. 2017;28(5): 627–34. doi: 10.1097/EDE.0000000000000690 28768298

4. Schwartz J, Bind M-A, Koutrakis P. Estimating causal effects of local air pollution on daily deaths: effect of low levels. Environ Health Perspect. 2016;125(1): 23–9. doi: 10.1289/EHP232 27203595

5. HEI Health Review Committee. Causal inference methods for estimating long-term health effects of air quality regulations: Health Effects Institute; 2016 [cited 2019 Apr 17]. Available from: https://www.healtheffects.org/publication/causal-inference-methods-estimating-long-term-health-effects-air-quality-regulations

6. Schwartz JD, Wang Y, Kloog I, Yitshak-Sade Ma, Dominici F, Zanobetti A. Estimating the effects of PM 2.5 on life expectancy using causal modeling methods. Environ Health Perspect. 2018;126(12): 127002. doi: 10.1289/EHP3130 30675798

7. Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med. 2007;26(1): 20–36. doi: 10.1002/sim.2739 17072897

8. Wu X, Mealli F, Kioumourtzoglou M-A, Dominici F, Braun D. Matching on Generalized Propensity Scores with Continuous Exposures. arXiv:1812.06575 [Preprint]. 2018 [cited 2019 Jul 15]. Available from: https://arxiv.org/abs/1812.06575

9. Wang Y, Lee M, Liu P, Shi L, Yu Z, Awad YA, et al. Doubly robust additive hazards models to estimate effects of a continuous exposure on survival. Epidemiology. 2017;28(6): 771. doi: 10.1097/EDE.0000000000000742 28832358

10. Garrido MM, Kelley AS, Paris J, Roza K, Meier DE, Morrison RS, et al. Methods for constructing and assessing propensity scores. Health Serv Res. 2014;49(5): 1701–20. doi: 10.1111/1475-6773.12182 24779867

11. Imbens GW, Lemieux T. Regression discontinuity designs: A guide to practice. J Econom. 2008;142(2): 615–35. doi: 10.1016/j.jeconom.2007.05.001

12. Ebenstein A, Fan M, Greenstone M, He G, Zhou M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proc Natl Acad Sci U S A. 2017;114(39): 10384–9. doi: 10.1073/pnas.1616784114 28893980

13. Lee DS. Randomized experiments from non-random selection in US House elections. J Econom. 2008;142(2): 675–97. doi: 10.1016/j.jeconom.2007.05.004

14. Card D, Krueger AB. Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania. National Bureau of Economic Research. 1993. doi: 10.3386/w4509

15. Renzi M, Forastiere F, Schwartz J, Davoli M, Michelozzi P, Stafoggia M. Long-Term PM10 Exposure and Cause-Specific Mortality in the Latium Region (Italy): A Difference-in-Differences Approach. Environ Health Perspect. 2019;127(6): 67004. doi: 10.1289/EHP3759 31166133

16. Leogrande S, Alessandrini ER, Stafoggia M, Morabito A, Nocioni A, Ancona C, et al. Industrial air pollution and mortality in the Taranto area, Southern Italy: A difference-in-differences approach. Environ Int. 2019;132: 105030. doi: 10.1016/j.envint.2019.105030 31398654

17. Corrigan AE, Becker MM, Neas LM, Cascio WE, Rappold AG. Fine particulate matters: The impact of air quality standards on cardiovascular mortality. Environ Res. 2018;161: 364–9. doi: 10.1016/j.envres.2017.11.025 29195185

18. Kioumourtzoglou M-A, Schwartz J, James P, Dominici F, Zanobetti A. PM2. 5 and mortality in 207 US cities: modification by temperature and city characteristics. Epidemiology. 2016;27(2): 221. doi: 10.1097/EDE.0000000000000422 26600257

19. Xue T, Zhu T, Zheng Y, Liu J, Li X, Zhang Q. Change in the number of PM2. 5-attributed deaths in China from 2000 to 2010: Comparison between estimations from census-based epidemiology and pre-established exposure-response functions. Environ Int. 2019;129: 430–7. doi: 10.1016/j.envint.2019.05.067 31154145

20. Vodonos A, Awad YA, Schwartz J. The concentration-response between long-term PM2. 5 exposure and mortality; A meta-regression approach. Environ Res. 2018;166: 677–89. doi: 10.1016/j.envres.2018.06.021 30077140

21. Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S. Assessing heatwave impacts on cause-specific emergency department visits in urban and rural communities of Queensland, Australia. Environ Res. 2019;168: 414–9. doi: 10.1016/j.envres.2018.10.013 30388498

22. Van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ Sci Technol. 2016;50(7): 3762–72. doi: 10.1021/acs.est.5b05833 26953851

23. Shi L, Kloog I, Zanobetti A, Liu P, Schwartz JD. Impacts of temperature and its variability on mortality in New England. Nat Clim Chang 2015;5(11): 988–91. doi: 10.1038/nclimate2704 26640524

24. Armstrong BG, Gasparrini A, Tobias A. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis. BMC Med Res Methodol. 2014;14(1): 122. doi: 10.1186/1471-2288-14-122 25417555

25. Barrowman MA, Peek N, Lambie M, Martin GP, Sperrin M. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies. BMC Med Res Methodol. 2019;19(1): 166. doi: 10.1186/s12874-019-0808-7 31366331

26. Fewell Z, Davey Smith G, Sterne JA. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol. 2007;166(6): 646–55. doi: 10.1093/aje/kwm165 17615092

27. Apte JS, Marshall JD, Cohen AJ, Brauer M. Addressing global mortality from ambient PM2. 5. Environ Sci Technol. 2015;49(13): 8057–66. doi: 10.1021/acs.est.5b01236 26077815

28. Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122(4): 397–403. doi: 10.1289/ehp.1307049 24518036

29. Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, et al. Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med. 2019;381(8): 705–15. doi: 10.1056/NEJMoa1817364 31433918

30. Mills NL, Törnqvist H, Gonzalez MC, Vink E, Robinson SD, Söderberg S, et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med. 2007;357(11): 1075–82. doi: 10.1056/NEJMoa066314 17855668

31. Chuang H-C, Ho K-F, Lin L-Y, Chang T-Y, Hong G-B, Ma C-M, et al. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environ Int. 2017;106: 91–6. doi: 10.1016/j.envint.2017.06.008 28624750

32. Streeter AJ, Lin NX, Crathorne L, Haasova M, Hyde C, Melzer D, et al. Adjusting for unmeasured confounding in nonrandomized longitudinal studies: a methodological review. J Clin Epidemiol. 2017;87: 23–34. doi: 10.1016/j.jclinepi.2017.04.022 28460857

33. Callaway B, Sant'Anna PH. Difference-in-differences with multiple time periods. arXiv: 1803.09015[Preprint]. 2018 [cited 2019 Jul 19]. Available from: https://arxiv.org/abs/1803.09015.

34. French B, Heagerty PJ. Analysis of longitudinal data to evaluate a policy change. Stat Med. 2008;27(24): 5005–25. doi: 10.1002/sim.3340 18618416

35. Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2008;26(4): 339–62. doi: 10.1080/10590500802494538 19034792

36. Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect. 2012;120(7): 965–70. doi: 10.1289/ehp.1104660 22456598

37. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919): 785–95. doi: 10.1016/S0140-6736(13)62158-3 24332274

38. Dehbi H-M, Blangiardo M, Gulliver J, Fecht D, de Hoogh K, Al-Kanaani Z, et al. Air pollution and cardiovascular mortality with over 25 years follow-up: A combined analysis of two British cohorts. Environ Int. 2017;99: 275–81. doi: 10.1016/j.envint.2016.12.004 27939045

39. Wang Y, Shi L, Lee M, Liu P, Di Q, Zanobetti A, et al. Long-term exposure to PM2. 5 and mortality among older adults in the southeastern US. Epidemiology. 2017;28(2): 207. doi: 10.1097/EDE.0000000000000614 28005571

40. Pope CA III, Lefler JS, Ezzati M, Higbee JD, Marshall JD, Kim S-Y, et al. Mortality risk and fine particulate air pollution in a large, representative cohort of US adults. Environ Health Perspect. 2019;127(7): 077007. doi: 10.1289/EHP4438 31339350

41. Pope CA III, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, et al. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect. 2011;119(11): 1616–21. doi: 10.1289/ehp.1103639 21768054

42. Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, et al. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect. 2015;124(1): 46–52. doi: 10.1289/ehp.1409111 26038801

43. Mauad T, Rivero DHRF, de Oliveira RC, de Faria Coimbra Lichtenfels AJ, Guimarães ET, de Andre PA, et al. Chronic exposure to ambient levels of urban particles affects mouse lung development. Am J Respir Crit Care Med. 2008;178(7): 721–8. doi: 10.1164/rccm.200803-436OC 18596224

44. Soares SRC, Carvalho-Oliveira R, Ramos-Sanchez E, Catanozi S, da Silva LFF, Mauad T, et al. Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. Atherosclerosis. 2009;207(2): 368–73. doi: 10.1016/j.atherosclerosis.2009.04.041 19486979

45. Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005;294(23): 3003–10. doi: 10.1001/jama.294.23.3003 16414948

46. Sun Q, Yue P, Kirk RI, Wang A, Moatti D, Jin X, et al. Ambient air particulate matter exposure and tissue factor expression in atherosclerosis. Inhal Toxicol. 2008;20(2): 127–37. doi: 10.1080/08958370701821482 18236227

47. Nemmar A, Hoet PM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts M, et al. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002;105(4): 411–4. doi: 10.1161/hc0402.104118 11815420

48. Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol. 2009;83(5): 429–37. doi: 10.1007/s00204-008-0371-1 18953527

49. Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016;8(1): E8. doi: 10.3978/j.issn.2072-1439.2015.11.37 26904258

50. Xing Y-F, Xu Y-H, Shi M-H, Lian Y-X. The impact of PM2. 5 on the human respiratory system. J Thorac Dis. 2016;8(1): E69. doi: 10.3978/j.issn.2072-1439.2016.01.19 26904255

51. Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nat Rev Cardiol. 2009;6(1): 36. doi: 10.1038/ncpcardio1399 19029991

52. Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119): 462–512. doi: 10.1016/S0140-6736(17)32345-0 29056410

53. Viana M, Kuhlbusch T, Querol X, Alastuey A, Harrison R, Hopke P, et al. Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci. 2008;39(10): 827–49. doi: 10.1016/j.jaerosci.2008.05.007

54. Garcia CA, Yap P-S, Park H-Y, Weller BL. Association of long-term PM2. 5 exposure with mortality using different air pollution exposure models: impacts in rural and urban California. Int J Environ Health Res. 2016;26(2): 145–57. doi: 10.1080/09603123.2015.1061113 26184093

55. Simoni M, Baldacci S, Maio S, Cerrai S, Sarno G, Viegi G. Adverse effects of outdoor pollution in the elderly. J Thorac Dis. 2015;7(1): 34. doi: 10.3978/j.issn.2072-1439.2014.12.10 25694816

56. Roberts JD, Voss JD, Knight B. The association of ambient air pollution and physical inactivity in the United States. PLoS ONE. 2014;9(3). doi: 10.1371/journal.pone.0090143 24598907

57. Yu W, Sulistyoningrum DC, Gasevic D, Xu R, Julia M, Murni IK, et al. Long-term exposure to PM2. 5 and fasting plasma glucose in non-diabetic adolescents in Yogyakarta, Indonesia. Environ Pollut. 2020;257: 113423. doi: 10.1016/j.envpol.2019.113423 31677868

58. Weichenthal S, Villeneuve PJ, Burnett RT, van Donkelaar A, Martin RV, Jones RR, et al. Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ Health Perspect. 2014;122(6): 609–15. doi: 10.1289/ehp.1307277 24633320

59. Trivedi T, Liu J, Probst JC, Martin AB. The metabolic syndrome: are rural residents at increased risk? J Rural Health. 2013;29(2): 188–97. doi: 10.1111/j.1748-0361.2012.00422.x 23551649

60. Branis M, Linhartova M. Association between unemployment, income, education level, population size and air pollution in Czech cities: evidence for environmental inequality? A pilot national scale analysis. Health Place. 2012;18(5): 1110–4. doi: 10.1016/j.healthplace.2012.04.011 22632903


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 6
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#