#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies


Autoři: Fumiaki Imamura aff001;  Amanda M. Fretts aff002;  Matti Marklund aff003;  Andres V. Ardisson Korat aff006;  Wei-Sin Yang aff008;  Maria Lankinen aff009;  Waqas Qureshi aff010;  Catherine Helmer aff011;  Tzu-An Chen aff012;  Jyrki K. Virtanen aff009;  Kerry Wong aff013;  Julie K. Bassett aff013;  Rachel Murphy aff014;  Nathan Tintle aff015;  Chaoyu Ian Yu aff016;  Ingeborg A. Brouwer aff017;  Kuo-Liong Chien aff008;  Yun-yu Chen aff008;  Alexis C. Wood aff012;  Liana C. del Gobbo aff019;  Luc Djousse aff020;  Johanna M. Geleijnse aff021;  Graham G. Giles aff013;  Janette de Goede aff021;  Vilmundur Gudnason aff024;  William S. Harris aff025;  Allison Hodge aff013;  Frank Hu aff006aff001;  Albert Koulman aff001;  Markku Laakso aff030;  Lars Lind aff032;  Hung-Ju Lin aff033;  Barbara McKnight aff016;  Kalina Rajaobelina aff011;  Ulf Riserus aff003;  Jennifer G. Robinson aff034;  Cecilia Samieri aff011;  Mackenzie Senn aff012;  David S. Siscovick aff035;  Sabita S. Soedamah-Muthu aff021;  Nona Sotoodehnia aff038;  Qi Sun aff006;  Michael Y. Tsai aff039;  Tomi-Pekka Tuomainen aff009;  Matti Uusitupa aff009;  Lynne E. Wagenknecht aff040;  Nick J. Wareham aff001;  Jason H. Y. Wu aff004;  Renata Micha aff005;  Rozenn N. Lemaitre aff038;  Dariush Mozaffarian aff005;  Nita G. Forouhi aff001
Působiště autorů: MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom aff001;  Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, Washington, United States of America aff002;  Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden aff003;  The George Institute for Global Health, the Faculty of Medicine, University of New South Wales, Sydney, Australia aff004;  Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States of America aff005;  Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America aff006;  Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America aff007;  Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, the Republic of China aff008;  Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland aff009;  Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America aff010;  INSERM, UMR 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France aff011;  USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America aff012;  Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia aff013;  Centre of Excellence in Cancer Prevention, School of Population & Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, Canada aff014;  Department of Mathematics and Statistics, Dordt University, Sioux Center, Iowa, United States of America aff015;  Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington, United States of America aff016;  Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands aff017;  Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, the Republic of China aff018;  Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America aff019;  Divisions of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America aff020;  Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands aff021;  Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Australia aff022;  Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia aff023;  Icelandic Heart Association Research Institute, Kopavogur, Iceland aff024;  Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America aff025;  OmegaQuant Analytics, Sioux Falls, South Dakota, United States of America aff026;  National Institute for Health Research Biomedical Research Centres Core Nutritional Biomarker Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom aff027;  National Institute for Health Research Biomedical Research Centres Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom aff028;  Medical Research Council Elsie Widdowson Laboratory, Cambridge, United Kingdom aff029;  Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland aff030;  Department of Medicine, Kuopio University Hospital, Kuopio, Finland aff031;  Department of Medical Sciences, Uppsala University, Uppsala, Sweden aff032;  Department of Internal Medicine, National Taiwan University Hospital, Taipei City, the Republic of China aff033;  Preventive Intervention Center, Departments of Epidemiology, the University of Iowa College of Public Health, Iowa City, Iowa, United States of America aff034;  The New York Academy of Medicine, New York, New York, United States of America aff035;  Center of Research on Psychological and Somatic disorders, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands aff036;  Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom aff037;  Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America aff038;  Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America aff039;  Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America aff040
Vyšlo v časopise: Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med 17(6): e1003102. doi:10.1371/journal.pmed.1003102
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003102

Souhrn

Background

De novo lipogenesis (DNL) is the primary metabolic pathway synthesizing fatty acids from carbohydrates, protein, or alcohol. Our aim was to examine associations of in vivo levels of selected fatty acids (16:0, 16:1n7, 18:0, 18:1n9) in DNL with incidence of type 2 diabetes (T2D).

Methods and findings

Seventeen cohorts from 12 countries (7 from Europe, 7 from the United States, 1 from Australia, 1 from Taiwan; baseline years = 1970–1973 to 2006–2010) conducted harmonized individual-level analyses of associations of DNL-related fatty acids with incident T2D. In total, we evaluated 65,225 participants (mean ages = 52.3–75.5 years; % women = 20.4%–62.3% in 12 cohorts recruiting both sexes) and 15,383 incident cases of T2D over the 9-year follow-up on average. Cohort-specific association of each of 16:0, 16:1n7, 18:0, and 18:1n9 with incident T2D was estimated, adjusted for demographic factors, socioeconomic characteristics, alcohol, smoking, physical activity, dyslipidemia, hypertension, menopausal status, and adiposity. Cohort-specific associations were meta-analyzed with an inverse-variance-weighted approach. Each of the 4 fatty acids positively related to incident T2D. Relative risks (RRs) per cohort-specific range between midpoints of the top and bottom quintiles of fatty acid concentrations were 1.53 (1.41–1.66; p < 0.001) for 16:0, 1.40 (1.33–1.48; p < 0.001) for 16:1n-7, 1.14 (1.05–1.22; p = 0.001) for 18:0, and 1.16 (1.07–1.25; p < 0.001) for 18:1n9. Heterogeneity was seen across cohorts (I2 = 51.1%–73.1% for each fatty acid) but not explained by lipid fractions and global geographical regions. Further adjusted for triglycerides (and 16:0 when appropriate) to evaluate associations independent of overall DNL, the associations remained significant for 16:0, 16:1n7, and 18:0 but were attenuated for 18:1n9 (RR = 1.03, 95% confidence interval (CI) = 0.94–1.13). These findings had limitations in potential reverse causation and residual confounding by imprecisely measured or unmeasured factors.

Conclusions

Concentrations of fatty acids in the DNL were positively associated with T2D incidence. Our findings support further work to investigate a possible role of DNL and individual fatty acids in the development of T2D.

Klíčová slova:

Fatty acids – Lipid analysis – Lipids – Lipogenesis – Metaanalysis – Phospholipids – Type 2 diabetes – United States


Zdroje

1. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63(7):895–902. doi: 10.1016/j.metabol.2014.04.003 24814684

2. Lodhi IJ, Wei X, Semenkovich CF. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab. 2011;22(1):1–8. doi: 10.1016/j.tem.2010.09.002 20889351

3. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell L V. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. New Engl J Med. 1993;328(4):238–44. doi: 10.1056/NEJM199301283280404 8418404

4. Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001;50(1):69–76. doi: 10.2337/diabetes.50.1.69 11147797

5. Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated Fatty Acids Prevent the Deleterious Effects of Palmitate and High Glucose on Human Pancreatic -Cell Turnover and Function. Diabetes. 2003;52(3):726–33. doi: 10.2337/diabetes.52.3.726 12606514

6. Shi H, Kokoeva M V, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest. 2006;116(11):3015–25. doi: 10.1172/JCI28898 17053832

7. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50(8):1771–7. doi: 10.2337/diabetes.50.8.1771 11473037

8. Luukkonen PK, S Sädevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, et al. Saturated fat is more metabolically harmful for the human liveer than unsaturated fat or simple sugars, Diabetes Care, 2018;41:1732–1739 doi: 10.2337/dc18-0071 29844096

9. King IB, Lemaitre RN, Kestin M. Effect of a low-fat diet on fatty acid composition in red cells, plasma phospholipids, and cholesterol esters: investigation of a biomarker of total fat intake. Am J Clin Nutr. 2006;83(2):227–36. doi: 10.1093/ajcn/83.2.227 16469979

10. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015;12(4):231–42. doi: 10.1038/nrgastro.2015.35 25782093

11. Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, Vessby B, et al. Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2008;18(7):503–10. doi: 10.1016/j.numecd.2007.04.005 18042359

12. Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw K-T, Wareham NJ, et al. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk. Am J Clin Nutr. 2010;92(5):1214–22. doi: 10.3945/ajcn.2010.29182 20861175

13. Kröger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Döring F, et al. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr. 2011;93(1):127–42. doi: 10.3945/ajcn.110.005447 20980488

14. Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA, et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86(1):189–97. doi: 10.1093/ajcn/86.1.189 17616780

15. Wang L, Folsom AR, Zheng Z-JJ, Pankow JS, Eckfeldt JH. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78(1):91–8. doi: 10.1093/ajcn/78.1.91 12816776

16. Harris WS, Luo J, Pottala J V., Margolis KL, Espeland MA, Robinson JG. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women’s Health Initiative Memory Study. PLoS ONE. 2016;11(2):e0147894. doi: 10.1371/journal.pone.0147894 26881936

17. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kröger J, Schulze MB, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014;2(10):810–8. doi: 10.1016/S2213-8587(14)70146-9 25107467

18. Lankinen M a., Stančáková A, Uusitupa M, Ågren J, Pihlajamäki J, Kuusisto J, et al. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia. 2015;58(11):2533–44. doi: 10.1007/s00125-015-3730-5 26277381

19. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease. JAMA Intern Med. 2016;176(8):1155. doi: 10.1001/jamainternmed.2016.2925 27357102

20. Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat A V, de Goede J, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017;5(12):965–74. doi: 10.1016/S2213-8587(17)30307-8 29032079

21. Imamura F, Fretts A, Marklund M, Ardisson Korat A V, Yang W-S, Lankinen M, et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med. 2018;15(10):e1002670. doi: 10.1371/journal.pmed.1002670 30303968

22. Kromhout D, Giltay EJ, Geleijnse JM, Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. New Engl J Med. 2010;363(21):2015–26. doi: 10.1056/NEJMoa1003603 20929341

23. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi: 10.1002/sim.1186 12111919

24. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–22. doi: 10.3945/ajcn.111.021907 9374124

25. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690. doi: 10.1001/jama.280.19.1690 9832001

26. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44. doi: 10.1016/j.cell.2008.07.048 18805087

27. Hla T, Kolesnick R. C16:0-Ceramide Signals Insulin Resistance. Cell Metab. 2014;20(5):703–5. doi: 10.1016/j.cmet.2014.10.017 25440051

28. Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med. 2010;16(4):400–2. doi: 10.1038/nm0410-400 20376053

29. Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen T, et al. Inhibition of Stearoyl-Coenzyme A Desaturase 1 Dissociates Insulin Resistance and Obesity From Atherosclerosis. Circulation. 2008;118(14):1467–75. doi: 10.1161/CIRCULATIONAHA.108.793182 18794388

30. Stanhope KL. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med. 2012;63:329–43. doi: 10.1146/annurev-med-042010-113026 22034869

31. Livesey G, Taylor R, Livesey H, Liu S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;97(3):584–96. doi: 10.3945/ajcn.112.041467 23364021

32. Eissing L, Scherer T, Tödter K, Knippschild U, Greve JW, Buurman WA, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nature Comm. 2013;4:1528. doi: 10.1038/ncomms2537 23443556

33. Wu JHY, Lemaitre RN, Imamura F, King IB, Song X, Spiegelman D, et al. Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: the Cardiovascular Health Study. Am J Clin Nutr. 2011;94(2):431–8. doi: 10.3945/ajcn.111.012054 21697077

34. Jump DB. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol. 2008;19(3):242–7. doi: 10.1097/MOL.0b013e3282ffaf6a 18460914

35. Rosqvist F, Kullberg J, Ståhlman M, Cedernaes J, Heurling K, Johansson H-E, et al. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial. J Clin Endocrinol Metab. 2019;104(12):6207–19. doi: 10.1210/jc.2019-00160 31369090

36. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37(2):569–86. doi: 10.2337/dc13-1203 24459154

37. Jacobs S, Kroger J, Floegel A, Boeing H, Drogan D, Pischon T, et al. Evaluation of various biomarkers as potential mediators of the association between coffee consumption and incident type 2 diabetes in the EPIC-Potsdam Study. Am J Clin Nutr. 2014;100(3):891–900. doi: 10.3945/ajcn.113.080317 25057154

38. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, et al. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. PLoS Med. 2016;13(7):e1002094. doi: 10.1371/journal.pmed.1002094 27434045

39. Wu JHY, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circulation Cardiovasc Genet. 2013;6(2):171–83. doi: 10.1161/CIRCGENETICS.112.964619 23362303

40. Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res. 2008;47(5):348–80. doi: 10.1016/j.plipres.2008.03.003 18435934

41. Hodson L, Rosqvist F, Parry SA. The influence of dietary fatty acids on liver fat content and metabolism. Proc Nutr Soc. 2020;79(1):30–41. doi: 10.1017/S0029665119000569 30942685

42. Song X, Huang Y, Neuhouser ML, Tinker LF, Vitolins MZ, Prentice RL, et al. Dietary long-chain fatty acids and carbohydrate biomarker evaluation in a controlled feeding study in participants from the Women’s Health Initiative cohort. Am J Clin Nutr. 2017;105:1272–82. doi: 10.3945/ajcn.117.153072 28446501

43. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, et al. Comparison of Low Fat and Low Carbohydrate Diets on Circulating Fatty Acid Composition and Markers of Inflammation. Lipids. 2008;43(1):65–77. doi: 10.1007/s11745-007-3132-7 18046594

44. Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res. 2013;52(1):15–42. doi: 10.1016/j.plipres.2012.08.002 23000367

45. Iggman D, Ärnlöv J, Cederholm T, Risérus U. Association of Adipose Tissue Fatty Acids With Cardiovascular and All-Cause Mortality in Elderly Men. JAMA Cardiol. 2016;1(7):745–53. doi: 10.1001/jamacardio.2016.2259 27541681

46. Alsharari ZD, Leander K, Sjögren P, Carlsson A, Cederholm T, de Faire U, et al. Association between carbohydrate intake and fatty acids in the de novo lipogenic pathway in serum phospholipids and adipose tissue in a population of Swedish men. Eur J Nutr. 2019 doi: 10.1007/s00394-019-02058-6 31350637

47. Imamura F, Micha R, Wu JHY, de Oliveira Otto MC, Otite FO, Abioye AI, et al. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016;13(7):e1002087. doi: 10.1371/journal.pmed.1002087 27434027

48. Skeaff CM, Hodson L, McKenzie JE. Dietary-Induced Changes in Fatty Acid Composition of Human Plasma, Platelet, and Erythrocyte Lipids Follow a Similar Time Course. J Nutr. 2006;136(3):565–9. doi: 10.1093/jn/136.3.565 16484525

49. Rosqvist F, McNeil CA, Pramfalk C, Parry SA, Low WS, Cornfield T, et al. Fasting hepatic de novo lipogenesis is not reliably assessed using circulating fatty acid markers. Am J Clin Nutr. 2019;109(2):260–8. doi: 10.1093/ajcn/nqy304 30721918

50. Diraison F, Pachiaudi C, Beylot M. Measuring lipogenesis and cholesterol synthesis in humans with deuterated water: use of simple gas chromatographic/mass spectrometric techniques. J Mass Spectrometry. 1997;32(1):81–6. doi: 10.1002/(SICI)1096-9888(199701)32:1<81::AID-JMS454>3.0.CO;2–2 9008871

51. Lai HTM, de Oliveira Otto MC, Lee Y, Wu JHY, Song X, King IB, et al. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause‐Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study. J Am Heart Assoc. 2019;8(22). doi: 10.1161/JAHA.119.012881 31711385

52. Zheng J-S, Imamura F, Sharp SJ, Koulman A, Griffin JL, Mulligan AA, et al. Changes in plasma phospholipid fatty acid profiles over 13 years and correlates of change: European Prospective Investigation into Cancer and Nutrition-Norfolk Study. Am J Clin Nutr. 2019;109(6):1527–34. doi: 10.1093/ajcn/nqz030 30997506


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 6
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#