Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
Autoři:
Naeimeh Atabaki-Pasdar aff001; Mattias Ohlsson aff002; Ana Viñuela aff004; Francesca Frau aff007; Hugo Pomares-Millan aff001; Mark Haid aff008; Angus G. Jones aff009; E. Louise Thomas aff010; Robert W. Koivula aff001; Azra Kurbasic aff001; Pascal M. Mutie aff001; Hugo Fitipaldi aff001; Juan Fernandez aff001; Adem Y. Dawed aff012; Giuseppe N. Giordano aff001; Ian M. Forgie aff012; Timothy J. McDonald aff009; Femke Rutters aff014; Henna Cederberg aff015; Elizaveta Chabanova aff016; Matilda Dale aff017; Federico De Masi aff018; Cecilia Engel Thomas aff017; Kristine H. Allin aff019; Tue H. Hansen aff019; Alison Heggie aff022; Mun-Gwan Hong aff017; Petra J. M. Elders aff023; Gwen Kennedy aff024; Tarja Kokkola aff025; Helle Krogh Pedersen aff019; Anubha Mahajan aff026; Donna McEvoy aff022; Francois Pattou aff027; Violeta Raverdy aff027; Ragna S. Häussler aff017; Sapna Sharma aff028; Henrik S. Thomsen aff016; Jagadish Vangipurapu aff025; Henrik Vestergaard aff019; Leen M. ‘t Hart aff014; Jerzy Adamski aff008; Petra B. Musholt aff035; Soren Brage aff036; Søren Brunak aff018; Emmanouil Dermitzakis aff004; Gary Frost aff038; Torben Hansen aff019; Markku Laakso aff025; Oluf Pedersen aff019; Martin Ridderstråle aff041; Hartmut Ruetten aff007; Andrew T. Hattersley aff009; Mark Walker aff022; Joline W. J. Beulens aff014; Andrea Mari aff043; Jochen M. Schwenk aff017; Ramneek Gupta aff018; Mark I. McCarthy aff011; Ewan R. Pearson aff012; Jimmy D. Bell aff010; Imre Pavo aff046; Paul W. Franks aff001
Působiště autorů:
Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
aff001; Computational Biology and Biological Physics Unit, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
aff002; Center for Applied Intelligent Systems Research, Halmstad University, Halmstad, Sweden
aff003; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
aff004; Institute for Genetics and Genomics in Geneva, University of Geneva Medical School, Geneva, Switzerland
aff005; Swiss Institute of Bioinformatics, Geneva, Switzerland
aff006; Sanofi-Aventis Deutschland, Frankfurt am Main, Germany
aff007; Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
aff008; Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
aff009; Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
aff010; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
aff011; Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
aff012; Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
aff013; Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
aff014; Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland
aff015; Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Herlev, Denmark
aff016; Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
aff017; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
aff018; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
aff019; Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
aff020; Department of Cardiology and Endocrinology, Slagelse Hospital, Slagelse, Denmark
aff021; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
aff022; Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
aff023; Immunoassay Biomarker Core Laboratory, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
aff024; Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
aff025; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
aff026; University of Lille, Inserm, UMR 1190, Translational Research in Diabetes, Department of Endocrine Surgery, CHU Lille, Lille, France
aff027; German Center for Diabetes Research, Neuherberg, Germany
aff028; Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
aff029; Steno Diabetes Center Copenhagen, Gentofte, Denmark
aff030; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
aff031; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
aff032; Lehrstuhl für Experimentelle Genetik, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität München, Freising, Germany
aff033; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
aff034; Diabetes Division, Research and Development, Sanofi, Frankfurt, Germany
aff035; MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
aff036; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
aff037; Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
aff038; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
aff039; Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
aff040; Clinical Pharmacology and Translational Medicine, Novo Nordisk, Søborg, Denmark
aff041; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
aff042; Institute of Neuroscience, National Research Council, Padua, Italy
aff043; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
aff044; OMNI Human Genetics, Genentech, South San Francisco, California, United States of America
aff045; Eli Lilly Regional Operations, Vienna, Austria
aff046; Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
aff047
Vyšlo v časopise:
Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Med 17(6): e32767. doi:10.1371/journal.pmed.1003149
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003149
Souhrn
Background
Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning.
Methods and findings
We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one.
Conclusions
In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community.
Trial registration
ClinicalTrials.gov NCT03814915.
Klíčová slova:
diabetes mellitus – Fats – Fatty liver – Insulin – Machine learning – Metabolomics – Oral glucose suppression test – Proteomic databases
Zdroje
1. Tilg H, Moschen AR. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol Metab. 2008;19(10):371–9. doi: 10.1016/j.tem.2008.08.005 18929493
2. Sattar N, Gill JM. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014;12:123. doi: 10.1186/s12916-014-0123-4 25159817
3. Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver disease. BMJ. 2014;349:g4596. doi: 10.1136/bmj.g4596 25239614
4. Lucas C, Lucas G, Lucas N, Krzowska-Firych J, Tomasiewicz K. A systematic review of the present and future of non-alcoholic fatty liver disease. Clin Exp Hepatol. 2018;4(3):165–74. doi: 10.5114/ceh.2018.78120 30324141
5. Fazel Y, Koenig AB, Sayiner M, Goodman ZD, Younossi ZM. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism. 2016;65(8):1017–25. doi: 10.1016/j.metabol.2016.01.012 26997539
6. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65(3):589–600. doi: 10.1016/j.jhep.2016.05.013 27212244
7. Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: a systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11(Suppl 1):S209–16.
8. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):81–4.
9. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi: 10.1002/hep.28431
10. Younossi ZM. Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol. 2019;70(3):531–44. doi: 10.1016/j.jhep.2018.10.033
11. Younossi ZM, Tampi R, Priyadarshini M, Nader F, Younossi IM, Racila A. Burden of illness and economic model for patients with nonalcoholic steatohepatitis in the United States. Hepatology. 2019;69(2):564–72. doi: 10.1002/hep.30254 30180285
12. Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(5):1264–81.e4. doi: 10.1053/j.gastro.2018.12.036 30660725
13. Castera L. Diagnosis of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: non-invasive tests are enough. Liver Int. 2018;38(Suppl 1):67–70.
14. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–72. doi: 10.1053/j.gastro.2009.06.005 19524579
15. Koivula RW, Heggie A, Barnett A, Cederberg H, Hansen TH, Koopman AD, et al. Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia. 2014;57(6):1132–42. doi: 10.1007/s00125-014-3216-x 24695864
16. Koivula RW, Forgie IM, Kurbasic A, Vinuela A, Heggie A, Giordano GN, et al. Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia. 2019;62(9):1601–15. doi: 10.1007/s00125-019-4906-1 31203377
17. Thomas EL, Fitzpatrick JA, Malik SJ, Taylor-Robinson SD, Bell JD. Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc. 2013;73:56–80. doi: 10.1016/j.pnmrs.2013.04.001 23962884
18. Wilman HR, Kelly M, Garratt S, Matthews PM, Milanesi M, Herlihy A, et al. Characterisation of liver fat in the UK Biobank cohort. PLoS ONE. 2017;12(2):e0172921. doi: 10.1371/journal.pone.0172921 28241076
19. Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE. 2014;9(4):e95192. doi: 10.1371/journal.pone.0095192 24755770
20. Aldo P, Marusov G, Svancara D, David J, Mor G. Simple Plex(TM): a novel multi-analyte, automated microfluidic immunoassay platform for the detection of human and mouse cytokines and chemokines. Am J Reprod Immunol. 2016;75(6):678–93. doi: 10.1111/aji.12512
21. Drobin K, Nilsson P, Schwenk JM. Highly multiplexed antibody suspension bead arrays for plasma protein profiling. Methods Mol Biol. 2013;1023:137–45. doi: 10.1007/978-1-4614-7209-4_8 23765623
22. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
23. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. doi: 10.2337/diacare.22.9.1462 10480510
24. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24(3):539–48. doi: 10.2337/diacare.24.3.539 11289482
25. Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23(3):295–301. doi: 10.2337/diacare.23.3.295 10868854
26. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol. 1996;58:267–88.
27. Setia MS. Methodology series module 5: sampling strategies. Indian J Dermatol. 2016;61(5):505–9. doi: 10.4103/0019-5154.190118 27688438
28. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. 20808728
29. Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32(9):1423–6. doi: 10.1093/bioinformatics/btw079 27153000
30. Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics. 2007;8:25. doi: 10.1186/1471-2105-8-25 17254353
31. Neumann U, Genze N, Heider D. EFS: an ensemble feature selection tool implemented as R-package and web-application. BioData Min. 2017;10:21. doi: 10.1186/s13040-017-0142-8 28674556
32. R Core Team. R: a language and environment for statistical computing. Version 3.2.5. Vienna: R Foundation for Statistical Computing; 2013.
33. Kuhn M. caret: classification and regression training. Version 6.0–71. Comprehensive R Archive Network; 2016.
34. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33. doi: 10.1186/1471-230X-6-33 17081293
35. Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42(7):503–8. doi: 10.1016/j.dld.2009.08.002 19766548
36. Fedchuk L, Nascimbeni F, Pais R, Charlotte F, Housset C, Ratziu V, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2014;40(10):1209–22. doi: 10.1111/apt.12963 25267215
37. Alberti KG, Zimmet P, Shaw J, Group IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62. doi: 10.1016/S0140-6736(05)67402-8
38. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. doi: 10.1371/journal.pmed.1001779 25826379
39. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–51. doi: 10.1016/S0140-6736(17)33102-1 29221645
40. Araujo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 2018;38(Suppl 1):47–51.
41. Motamed N, Sohrabi M, Ajdarkosh H, Hemmasi G, Maadi M, Sayeedian FS, et al. Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22(10):3023–30. doi: 10.3748/wjg.v22.i10.3023 26973398
42. Poynard T, Ratziu V, Naveau S, Thabut D, Charlotte F, Messous D, et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comp Hepatol. 2005;4:10. doi: 10.1186/1476-5926-4-10 16375767
43. Baranova A, Liotta L, Petricoin E, Younossi ZM. The role of genomics and proteomics: technologies in studying non-alcoholic fatty liver disease. Clin Liver Dis. 2007;11(1):209–20. doi: 10.1016/j.cld.2007.02.003 17544980
44. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018;68(2):268–79. doi: 10.1016/j.jhep.2017.09.003 29122391
45. Wood GC, Chu X, Argyropoulos G, Benotti P, Rolston D, Mirshahi T, et al. A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains. Sci Rep. 2017;7:43238. doi: 10.1038/srep43238 28266614
46. Eslam M, Hashem AM, Romero-Gomez M, Berg T, Dore GJ, Mangia A, et al. FibroGENE: a gene-based model for staging liver fibrosis. J Hepatol. 2016;64(2):390–8. doi: 10.1016/j.jhep.2015.11.008 26592354
47. Alonso C, Fernandez-Ramos D, Varela-Rey M, Martinez-Arranz I, Navasa N, Van Liempd SM, et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology. 2017;152(6):1449–61.e7. doi: 10.1053/j.gastro.2017.01.015 28132890
48. Perakakis N, Polyzos SA, Yazdani A, Sala-Vila A, Kountouras J, Anastasilakis AD, et al. Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: a proof of concept study. Metabolism. 2019;101:154005. doi: 10.1016/j.metabol.2019.154005 31711876
49. Katsiki N, Gastaldelli A, Mikhailidis DP. Predictive models with the use of omics and supervised machine learning to diagnose non-alcoholic fatty liver disease: A “non-invasive alternative” to liver biopsy? Metabolism. 2019;101:154010. doi: 10.1016/j.metabol.2019.154010
50. Canbay A, Kalsch J, Neumann U, Rau M, Hohenester S, Baba HA, et al. Non-invasive assessment of NAFLD as systemic disease—a machine learning perspective. PLoS ONE. 2019;14(3):e0214436. doi: 10.1371/journal.pone.0214436
51. Danford CJ, Yao ZM, Jiang ZG. Non-alcoholic fatty liver disease: a narrative review of genetics. J Biomed Res. 2018;32(5):389–400. doi: 10.7555/JBR.32.20180045 30355853
52. Al-Fayoumi S, Hashiguchi T, Shirakata Y, Mascarenhas J, Singer JW. Pilot study of the antifibrotic effects of the multikinase inhibitor pacritinib in a mouse model of liver fibrosis. J Exp Pharmacol. 2018;10:9–17. doi: 10.2147/JEP.S150729 29785143
53. Hagstrom H, Stal P, Hultcrantz R, Brismar K, Ansurudeen I. IGFBP-1 and IGF-I as markers for advanced fibrosis in NAFLD—a pilot study. Scand J Gastroenterol. 2017;52(12):1427–34. doi: 10.1080/00365521.2017.1379556
54. Petaja EM, Zhou Y, Havana M, Hakkarainen A, Lundbom N, Ihalainen J, et al. Phosphorylated IGFBP-1 as a non-invasive predictor of liver fat in NAFLD. Sci Rep. 2016;6:24740. doi: 10.1038/srep24740 27091074
55. Adamek A, Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases. Int J Mol Sci. 2018;19(5):1308.
56. Chen Y, Huang H, Xu C, Yu C, Li Y. Long non-coding RNA profiling in a non-alcoholic fatty liver disease rodent model: new insight into pathogenesis. Int J Mol Sci. 2017;18(1):21.
57. Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67(1):145–58. doi: 10.1002/hep.29465 28802074
58. Imhasly S, Naegeli H, Baumann S, von Bergen M, Luch A, Jungnickel H, et al. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows. BMC Vet Res. 2014;10:122. doi: 10.1186/1746-6148-10-122 24888604
59. Koch M, Freitag-Wolf S, Schlesinger S, Borggrefe J, Hov JR, Jensen MK, et al. Serum metabolomic profiling highlights pathways associated with liver fat content in a general population sample. Eur J Clin Nutr. 2017;71(8):995–1001. doi: 10.1038/ejcn.2017.43 28378853
60. Uhlen M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, et al. The human secretome. Sci Signal. 2019;12(609):eaaz0274. doi: 10.1126/scisignal.aaz0274
61. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. 25613900
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 6
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- O krok blíže k pochopení efektu placeba při léčbě bolesti
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Vánoční dárky s přidanou hodnotou pro zdraví – nechte se inspirovat a poraďte svým pacientům
Nejčtenější v tomto čísle
- Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis
- Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies
- The potential impact of COVID-19 in refugee camps in Bangladesh and beyond: A modeling study
- Chronic pain diagnosis in refugee torture survivors: A prospective, blinded diagnostic accuracy study