Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling
Autoři:
Na Liu aff001; Yu Yin aff001; Haiying Wang aff001; Zhongcheng Zhou aff001; Xiaoyan Sheng aff001; Haifeng Fu aff001; Renpeng Guo aff001; Hua Wang aff001; Jiao Yang aff001; Peng Gong aff001; Wen Ning aff001; Zhenyu Ju aff005; Yifei Liu aff006; Lin Liu aff001
Působiště autorů:
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
aff001; Key Laboratory of Bioactive Materials, Ministry of Education, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
aff002; School of Medicine, Nankai University, Tianjin, China
aff003; Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
aff004; Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
aff005; Yale Fertility Center and Department of OB/GYN, Yale University School of Medicine, New Haven, CT, United States of America
aff006
Vyšlo v časopise:
Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling. PLoS Genet 15(9): e32767. doi:10.1371/journal.pgen.1008368
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008368
Souhrn
Telomere shortening is associated with aging and age-associated diseases. Additionally, telomere dysfunction resulting from telomerase gene mutation can lead to premature aging, such as apparent skin atrophy and hair loss. However, the molecular signaling linking telomere dysfunction to skin atrophy remains elusive. Here we show that dysfunctional telomere disrupts BMP/pSmad/P63 signaling, impairing epidermal stem cell specification and differentiation of skin and hair follicles. We find that telomere shortening mediated by Terc loss up-regulates Follistatin (Fst), inhibiting pSmad signaling and down-regulating P63 and epidermal keratins in an ESC differentiation model as well as in adult development of telomere-shortened mice. Mechanistically, short telomeres disrupt PRC2/H3K27me3-mediated repression of Fst. Our findings reveal that skin atrophy due to telomere dysfunction is caused by a previously unappreciated link with Fst and BMP signaling that could be explored in the development of therapies.
Klíčová slova:
Biology and life sciences – Developmental biology – Cell differentiation – Cell biology – Chromosome biology – Chromosomes – Chromosome structure and function – Telomeres – Telomere length – Chromatin – Chromatin modification – DNA methylation – Cellular types – Animal cells – Stem cells – Anatomy – Integumentary system – Skin – Epidermis – Hair follicles – Hair – Genetics – Gene expression – Epigenetics – DNA modification – DNA – Biochemistry – Nucleic acids – Medicine and health sciences
Zdroje
1. Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11: 161–176. doi: 10.1038/nrc3025 21346783
2. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, et al. (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712. doi: 10.1016/s0092-8674(00)80580-2 10089885
3. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, et al. (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36: 877–882. doi: 10.1038/ng1389 15235603
4. Armanios M, Alder JK, Parry EM, Karim B, Strong MA, et al. (2009) Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet 85: 823–832. doi: 10.1016/j.ajhg.2009.10.028 19944403
5. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 350: 1193–1198. doi: 10.1126/science.aab3389 26785477
6. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20: 847–856. doi: 10.1038/nm.3643 25100530
7. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, et al. (2004) Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 36: 447–449. doi: 10.1038/ng1346 15098033
8. Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309: 1253–1256. doi: 10.1126/science.1115025 16037417
9. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, et al. (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22: 654–667. doi: 10.1101/gad.451008 18283121
10. Buckingham EM, Klingelhutz AJ (2011) The role of telomeres in the ageing of human skin. Exp Dermatol 20: 297–302. doi: 10.1111/j.1600-0625.2010.01242.x 21371125
11. Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19: 1129–1155. doi: 10.1101/gad.1303605 15905405
12. Tsankov AM, Akopian V, Pop R, Chetty S, Gifford CA, et al. (2015) A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol 33: 1182–1192. doi: 10.1038/nbt.3387 26501952
13. De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, et al. (2015) Hallmarks of pluripotency. Nature 525: 469–478. doi: 10.1038/nature15515 26399828
14. Tadeu AM, Horsley V (2013) Notch signaling represses p63 expression in the developing surface ectoderm. Development 140: 3777–3786. doi: 10.1242/dev.093948 23924630
15. Green H, Easley K, Iuchi S (2003) Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci U S A 100: 15625–15630. doi: 10.1073/pnas.0307226100 14663151
16. Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, et al. (2009) Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 374: 1745–1753. doi: 10.1016/S0140-6736(09)61496-3 19932355
17. Huang J, Wang F, Okuka M, Liu N, Ji G, et al. (2011) Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 21: 779–792. doi: 10.1038/cr.2011.16 21283131
18. Pucci F, Gardano L, Harrington L (2013) Short telomeres in ESCs lead to unstable differentiation. Cell Stem Cell 12: 479–486. doi: 10.1016/j.stem.2013.01.018 23561444
19. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, et al. (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4: 141–154. doi: 10.1016/j.stem.2008.12.010 19200803
20. Aguado T, Gutierrez FJ, Aix E, Schneider RP, Giovinazzo G, et al. (2017) Telomere Length Defines the Cardiomyocyte Differentiation Potency of Mouse Induced Pluripotent Stem Cells. Stem Cells 35: 362–373. doi: 10.1002/stem.2497 27612935
21. Albers KM (1996) Keratin biochemistry. Clin Dermatol 14: 309–320. 8862908
22. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, et al. (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713. doi: 10.1038/19531 10227293
23. Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, et al. (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98: 3156–3161. doi: 10.1073/pnas.061032098 11248048
24. Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180: 273–284. doi: 10.1083/jcb.200708185 18209104
25. Avior Y, Biancotti JC, Benvenisty N (2015) TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas. Stem Cell Reports 4: 967–974. doi: 10.1016/j.stemcr.2015.05.006 26070610
26. Siegl-Cachedenier I, Flores I, Klatt P, Blasco MA (2007) Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. J Cell Biol 179: 277–290. doi: 10.1083/jcb.200704141 17954610
27. Oshimori N, Fuchs E (2012) Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10: 63–75. doi: 10.1016/j.stem.2011.11.005 22226356
28. Gerrard L, Rodgers L, Cui W (2005) Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 23: 1234–1241. doi: 10.1634/stemcells.2005-0110 16002783
29. Qiao Y, Zhu Y, Sheng N, Chen J, Tao R, et al. (2012) AP2gamma regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning. Cell Res 22: 1546–1561. doi: 10.1038/cr.2012.122 22945355
30. Di-Gregorio A, Sancho M, Stuckey DW, Crompton LA, Godwin J, et al. (2007) BMP signalling inhibits premature neural differentiation in the mouse embryo. Development 134: 3359–3369. doi: 10.1242/dev.005967 17699604
31. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31–40. doi: 10.1016/s0896-6273(00)00083-0 11086981
32. Robin JD, Ludlow AT, Batten K, Magdinier F, Stadler G, et al. (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev 28: 2464–2476. doi: 10.1101/gad.251041.114 25403178
33. Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39: 243–250. doi: 10.1038/ng1952 17237781
34. Dauber KL, Perdigoto CN, Valdes VJ, Santoriello FJ, Cohen I, et al. (2016) Dissecting the Roles of Polycomb Repressive Complex 2 Subunits in the Control of Skin Development. J Invest Dermatol 136: 1647–1655. doi: 10.1016/j.jid.2016.02.809 26994968
35. Bardot ES, Valdes VJ, Zhang J, Perdigoto CN, Nicolis S, et al. (2013) Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells. EMBO J 32: 1990–2000. doi: 10.1038/emboj.2013.110 23673358
36. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA (2006) p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20: 3185–3197. doi: 10.1101/gad.1463206 17114587
37. Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S (2009) An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 4: e5623. doi: 10.1371/journal.pone.0005623 19461998
38. Laronda MM, Unno K, Ishi K, Serna VA, Butler LM, et al. (2013) Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Mullerian duct epithelium. Dev Biol 381: 5–16. doi: 10.1016/j.ydbio.2013.06.024 23830984
39. Munoz P, Blanco R, Flores JM, Blasco MA (2005) XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 37: 1063–1071. doi: 10.1038/ng1633 16142233
40. Tejera AM, Stagno d'Alcontres M, Thanasoula M, Marion RM, Martinez P, et al. (2010) TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev Cell 18: 775–789. doi: 10.1016/j.devcel.2010.03.011 20493811
41. Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, et al. (2009) Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23: 2060–2075. doi: 10.1101/gad.543509 19679647
42. Stout GJ, Blasco MA (2009) Genetic dissection of the mechanisms underlying telomere-associated diseases: impact of the TRF2 telomeric protein on mouse epidermal stem cells. Dis Model Mech 2: 139–156. doi: 10.1242/dmm.002121 19259387
43. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, et al. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34. doi: 10.1016/s0092-8674(01)80006-4 9335332
44. Shalom-Feuerstein R, Lena AM, Zhou H, De La Forest Divonne S, Van Bokhoven H, et al. (2011) DeltaNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 18: 887–896. doi: 10.1038/cdd.2010.159 21127502
45. Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129: 523–536. doi: 10.1016/j.cell.2007.02.045 17482546
46. Vanbokhoven H, Melino G, Candi E, Declercq W (2011) p63, a story of mice and men. J Invest Dermatol 131: 1196–1207. doi: 10.1038/jid.2011.84 21471985
47. Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, et al. (2012) DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139: 772–782. doi: 10.1242/dev.071191 22274697
48. Su X, Paris M, Gi YJ, Tsai KY, Cho MS, et al. (2009) TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5: 64–75. doi: 10.1016/j.stem.2009.04.003 19570515
49. Sethi I, Romano RA, Gluck C, Smalley K, Vojtesek B, et al. (2015) A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues. BMC Genomics 16: 584. doi: 10.1186/s12864-015-1793-9 26251276
50. Hao LY, Armanios M, Strong MA, Karim B, Feldser DM, et al. (2005) Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 123: 1121–1131. doi: 10.1016/j.cell.2005.11.020 16360040
51. Varela E, Munoz-Lorente MA, Tejera AM, Ortega S, Blasco MA (2016) Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun 7: 11739. doi: 10.1038/ncomms11739 27252083
52. Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, et al. (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63: 39–50. doi: 10.1016/s0925-4773(97)00673-4 9178255
53. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, et al. (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374: 360–363. doi: 10.1038/374360a0 7885475
54. Antsiferova M, Klatte JE, Bodo E, Paus R, Jorcano JL, et al. (2009) Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Lab Invest 89: 131–141. doi: 10.1038/labinvest.2008.120 19079322
55. Wankell M, Munz B, Hubner G, Hans W, Wolf E, et al. (2001) Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J 20: 5361–5372. doi: 10.1093/emboj/20.19.5361 11574468
56. Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, et al. (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18: 2950–2960. doi: 10.1093/emboj/18.11.2950 10357808
57. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560. doi: 10.1038/nature06008 17603471
58. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353. doi: 10.1038/nature04733 16625203
59. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, et al. (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32: 491–502. doi: 10.1016/j.molcel.2008.10.016 19026780
60. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, et al. (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136: 1122–1135. doi: 10.1016/j.cell.2008.12.043 19303854
61. Ezhkova E, Lien WH, Stokes N, Pasolli HA, Silva JM, et al. (2011) EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25: 485–498. doi: 10.1101/gad.2019811 21317239
62. Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA (2008) Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev 22: 1865–1870. doi: 10.1101/gad.1673508 18628393
63. Lien WH, Guo X, Polak L, Lawton LN, Young RA, et al. (2011) Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9: 219–232. doi: 10.1016/j.stem.2011.07.015 21885018
64. Pattison JM, Melo SP, Piekos SN, Torkelson JL, Bashkirova E, et al. (2018) Retinoic acid and BMP4 cooperate with p63 to alter chromatin dynamics during surface epithelial commitment. Nat Genet 50: 1658–1665. doi: 10.1038/s41588-018-0263-0 30397335
65. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F, et al. (2012) Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22: 1128–1138. doi: 10.1101/gr.133728.111 22466170
66. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7: 862–869. 8608017
67. Hartig SM (2013) Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol Chapter 14: Unit14 15.
68. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30: e47. doi: 10.1093/nar/30.10.e47 12000852
69. Callicott RJ, Womack JE (2006) Real-time PCR assay for measurement of mouse telomeres. Comp Med 56: 17–22. 16521855
70. Liu L, Bailey SM, Okuka M, Munoz P, Li C, et al. (2007) Telomere lengthening early in development. Nat Cell Biol 9: 1436–1441. doi: 10.1038/ncb1664 17982445
71. Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327: 1657–1661. doi: 10.1126/science.1185100 20339076
72. Dan J, Liu Y, Liu N, Chiourea M, Okuka M, et al. (2014) Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell 29: 7–19. doi: 10.1016/j.devcel.2014.03.004 24735877
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 9
Nejčtenější v tomto čísle
- Origins of DNA replication
- Environmental and epigenetic regulation of Rider retrotransposons in tomato
- Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Temperature preference can bias parental genome retention during hybrid evolution