Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation
Autoři:
Dai-Chi Liu aff001; Daphne E. Eagleman aff002; Nien-Pei Tsai aff001
Působiště autorů:
Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
aff001; Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
aff002
Vyšlo v časopise:
Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation. PLoS Genet 15(9): e32767. doi:10.1371/journal.pgen.1008364
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008364
Souhrn
Seizures can induce endoplasmic reticulum (ER) stress, and sustained ER stress contributes to neuronal death after epileptic seizures. Despite the recent debate on whether inhibiting ER stress can reduce neuronal death after seizures, whether and how ER stress impacts neural activity and seizures remain unclear. In this study, we discovered that the acute ER stress response functions to repress neural activity through a protein translation-dependent mechanism. We found that inducing ER stress promotes the expression and distribution of murine double minute-2 (Mdm2) in the nucleus, leading to ubiquitination and down-regulation of the tumor suppressor p53. Reduction of p53 subsequently maintains protein translation, before the onset of translational repression seen during the latter phase of the ER stress response. Disruption of Mdm2 in an Mdm2 conditional knockdown (cKD) mouse model impairs ER stress-induced p53 down-regulation, protein translation, and reduction of neural activity and seizure severity. Importantly, these defects in Mdm2 cKD mice were restored by both pharmacological and genetic inhibition of p53 to mimic the inactivation of p53 seen during ER stress. Altogether, our study uncovered a novel mechanism by which neurons respond to acute ER stress. Further, this mechanism plays a beneficial role in reducing neural activity and seizure severity. These findings caution against inhibition of ER stress as a neuroprotective strategy for seizures, epilepsies, and other pathological conditions associated with excessive neural activity.
Klíčová slova:
Action potentials – Drug therapy – Endoplasmic reticulum – Neurons – Protein translation – Stress signaling cascade – Endoplasmic reticulum stress response – Intraperitoneal injections
Zdroje
1. Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatric disease and treatment. 2016;12:2605–16. Epub 2016/10/30. doi: 10.2147/NDT.S84852 27789949; PubMed Central PMCID: PMC5068473.
2. Golyala A, Kwan P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure. 2017;44:147–56. Epub 2016/12/27. doi: 10.1016/j.seizure.2016.11.022 28017578.
3. Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C, et al. CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. Brain: a journal of neurology. 2013;136(Pt 2):577–92. Epub 2013/01/31. doi: 10.1093/brain/aws337 23361066.
4. Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, Yanagi H, et al. Expression of the endoplasmic reticulum molecular chaperone (ORP150) rescues hippocampal neurons from glutamate toxicity. The Journal of clinical investigation. 2001;108(10):1439–50. Epub 2001/11/21. doi: 10.1172/JCI12978 11714735; PubMed Central PMCID: PMC209417.
5. Pelletier MR, Wadia JS, Mills LR, Carlen PL. Seizure-induced cell death produced by repeated tetanic stimulation in vitro: possible role of endoplasmic reticulum calcium stores. Journal of neurophysiology. 1999;81(6):3054–64. Epub 1999/06/16. doi: 10.1152/jn.1999.81.6.3054 10368420.
6. Zhao Y, Han Y, Bu DF, Zhang J, Li QR, Jin HF, et al. Reduced AKT phosphorylation contributes to endoplasmic reticulum stress-mediated hippocampal neuronal apoptosis in rat recurrent febrile seizure. Life sciences. 2016;153:153–62. Epub 2016/04/17. doi: 10.1016/j.lfs.2016.04.008 27084529.
7. Martinez G, Khatiwada S, Costa-Mattioli M, Hetz C. ER Proteostasis Control of Neuronal Physiology and Synaptic Function. Trends in neurosciences. 2018;41(9):610–24. Epub 2018/03/17. doi: 10.1016/j.tins.2018.05.009 29945734; PubMed Central PMCID: PMC5854579.
8. Sakakibara Y, Sekiya M, Fujisaki N, Quan X, Iijima KM. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. 2018;14(1):e1007196. doi: 10.1371/journal.pgen.1007196 29357349.
9. Fahrenthold BK, Fernandes KA, Libby RT. Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death. PLoS genetics. 2018;8(1):4641. Epub 2018/01/23. doi: 10.1038/s41598-018-22848-y 29545615; PubMed Central PMCID: PMC5794194.
10. Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. The FEBS journal. 2018;285(6):995–1011. Epub 2018/06/28. doi: 10.1111/febs.14332 29148236.
11. Santos LE, Ferreira ST. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology. 2018;136(Pt B):350–60. Epub 2017/11/14. doi: 10.1016/j.neuropharm.2017.11.016 29129774.
12. Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology. 2018;136(Pt B):160–71. Epub 2017/11/18. doi: 10.1016/j.neuropharm.2017.11.014 29129775.
13. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2007;27(4):901–8. Epub 2007/01/26. doi: 10.1523/jneurosci.4289-06.2007 17251432.
14. Yamamoto A, Murphy N, Schindler CK, So NK, Stohr S, Taki W, et al. Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. Journal of neuropathology and experimental neurology. 2006;65(3):217–25. Epub 2006/05/03. doi: 10.1097/01.jnen.0000202886.22082.2a 16651883.
15. Zhang T, Lu D, Yang W, Shi C, Zang J, Shen L, et al. HMG-CoA Reductase Inhibitors Relieve Endoplasmic Reticulum Stress by Autophagy Inhibition in Rats With Permanent Brain Ischemia. Frontiers in neuroscience. 2018;12:405. Epub 2018/07/05. doi: 10.3389/fnins.2018.00405 29970982; PubMed Central PMCID: PMC6018104.
16. Kim E, Sakata K, Liao FF. Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS genetics. 2017;13(7):e1006849. Epub 2017/07/06. doi: 10.1371/journal.pgen.1006849 28678786; PubMed Central PMCID: PMC5517072.
17. Jewett KA, Christian CA, Bacos JT, Lee KY, Zhu J, Tsai NP. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling. Molecular brain. 2016;9(1):32. Epub 2016/03/24. doi: 10.1186/s13041-016-0214-6 27000207; PubMed Central PMCID: PMC4802718.
18. Zhu J, Lee KY, Jewett KA, Man HY, Chung HJ, Tsai NP. Epilepsy-associated gene Nedd4-2 mediates neuronal activity and seizure susceptibility through AMPA receptors. PLoS genetics. 2017;13(2):e1006634. doi: 10.1371/journal.pgen.1006634 28212375; PubMed Central PMCID: PMC5338825.
19. Ferraro TN, Golden GT, Smith GG, Longman RL, Snyder RL, DeMuth D, et al. Quantitative genetic study of maximal electroshock seizure threshold in mice: evidence for a major seizure susceptibility locus on distal chromosome 1. Genomics. 2001;75(1–3):35–42. Epub 2001/07/27. doi: 10.1006/geno.2001.6577 11472065.
20. Puttachary S, Sharma S, Tse K, Beamer E, Sexton A, Crutison J, et al. Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry. PloS one. 2015;10(7):e0131705. Epub 2015/07/15. doi: 10.1371/journal.pone.0131705 26161754; PubMed Central PMCID: PMC4498886.
21. Abdullahi A, Stanojcic M, Parousis A, Patsouris D, Jeschke MG. Modeling Acute ER Stress in Vivo and in Vitro. Shock (Augusta, Ga). 2017;47(4):506–13. Epub 2016/10/19. doi: 10.1097/shk.0000000000000759 27755507; PubMed Central PMCID: PMC5348263.
22. Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, et al. TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's beta-amyloid oligomers in mice and monkeys. Cell metabolism. 2013;18(6):831–43. Epub 2013/12/10. doi: 10.1016/j.cmet.2013.11.002 24315369.
23. Harrill JA, Chen H, Streifel KM, Yang D, Mundy WR, Lein PJ. Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Molecular brain. 2015;8:10. Epub 2015/03/12. doi: 10.1186/s13041-015-0099-9 25757474; PubMed Central PMCID: PMC4339650.
24. Cotterill E, Hall D, Wallace K, Mundy WR, Eglen SJ, Shafer TJ. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates. Journal of biomolecular screening. 2016;21(5):510–9. Epub 2016/03/31. doi: 10.1177/1087057116640520 27028607; PubMed Central PMCID: PMC4904353.
25. Moutaux E, Charlot B, Genoux A, Saudou F, Cazorla M. An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks. Lab on a chip. 2018;18(22):3425–35. Epub 2018/10/06. doi: 10.1039/c8lc00694f 30289147.
26. Niedringhaus M, Chen X, Dzakpasu R. Long-Term Dynamical Constraints on Pharmacologically Evoked Potentiation Imply Activity Conservation within In Vitro Hippocampal Networks. PloS one. 2015;10(6):e0129324. Epub 2015/06/13. doi: 10.1371/journal.pone.0129324 26070215; PubMed Central PMCID: PMC4466488.
27. Penn Y, Segal M, Moses E. Network synchronization in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(12):3341–6. Epub 2016/03/11. doi: 10.1073/pnas.1515105113 26961000; PubMed Central PMCID: PMC4812773.
28. Nosyreva E, Kavalali ET. Activity-dependent augmentation of spontaneous neurotransmission during endoplasmic reticulum stress. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010;30(21):7358–68. Epub 2010/05/28. doi: 10.1523/jneurosci.5358-09.2010 20505103; PubMed Central PMCID: PMC2892630.
29. Luciani DS, Gwiazda KS, Yang TL, Kalynyak TB, Bychkivska Y, Frey MH, et al. Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress and beta-cell death. Diabetes. 2009;58(2):422–32. Epub 2008/11/27. doi: 10.2337/db07-1762 19033399; PubMed Central PMCID: PMC2628616.
30. Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJ. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. 2015;6:e1587. doi: 10.1038/cddis.2014.548 25569104.
31. Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, et al. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cerebral cortex (New York, NY: 1991). 2017;27(3):2226–48. Epub 2016/03/24. doi: 10.1093/cercor/bhw075 27005990; PubMed Central PMCID: PMC5963824.
32. Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIalpha and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell reports. 2015;13(10):2297–311. Epub 2015/12/17. doi: 10.1016/j.celrep.2015.11.013 26670047; PubMed Central PMCID: PMC4685008.
33. Tang D, Khaleque MA, Jones EL, Theriault JR, Li C, Wong WH, et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell stress & chaperones. 2005;10(1):46–58. Epub 2005/04/19. doi: 10.1379/CSC-44R.1 15832947; PubMed Central PMCID: PMC1074571.
34. Liu DC, Seimetz J, Lee KY, Kalsotra A, Chung HJ, Lu H, et al. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity. Human molecular genetics. 2017;26(20):3895–908. Epub 2017/10/11. doi: 10.1093/hmg/ddx276 29016848; PubMed Central PMCID: PMC6075224.
35. Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cellular signalling. 2017;33:49–58. Epub 2017/02/13. doi: 10.1016/j.cellsig.2017.02.005 28189587.
36. Tackmann NR, Zhang Y. Mouse modelling of the MDM2/MDMX-p53 signalling axis. Journal of molecular cell biology. 2017;9(1):34–44. Epub 2017/01/18. doi: 10.1093/jmcb/mjx006 28096294; PubMed Central PMCID: PMC5907827.
37. Tsai NP, Wilkerson JR, Guo W, Huber KM. FMRP-Dependent Mdm2 Dephosphorylation is required for MEF2-Induced Synapse Elimination. Hum Mol Genet. 2017;26(2):293–304. doi: 10.1093/hmg/ddw386 28025327
38. Tsai NP, Wilkerson JR, Guo W, Maksimova MA, DeMartino GN, Cowan CW, et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012;151(7):1581–94. Epub 2012/12/25. doi: 10.1016/j.cell.2012.11.040 23260144; PubMed Central PMCID: PMC3530171.
39. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2002;22(15):6309–14. Epub 2002/08/02. doi: 20026564 12151506.
40. Young KM, Fogarty M, Kessaris N, Richardson WD. Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2007;27(31):8286–96. Epub 2007/08/03. doi: 10.1523/jneurosci.0476-07.2007 17670975.
41. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378(6553):206–8. Epub 1995/11/09. doi: 10.1038/378206a0 7477327.
42. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378(6553):203–6. Epub 1995/11/09. doi: 10.1038/378203a0 7477326.
43. Takatani T, Shirakawa J, Roe MW, Leech CA, Maier BF, Mirmira RG, et al. IRS1 deficiency protects beta-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation. Scientific reports. 2016;6:28177. Epub 2016/07/06. doi: 10.1038/srep28177 27378176; PubMed Central PMCID: PMC4932502.
44. Templin AT, Maier B, Tersey SA, Hatanaka M, Mirmira RG. Maintenance of Pdx1 mRNA translation in islet beta-cells during the unfolded protein response. Molecular endocrinology (Baltimore, Md). 2014;28(11):1820–30. Epub 2014/09/25. doi: 10.1210/me.2014-1157 25251389; PubMed Central PMCID: PMC4213362.
45. Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology. 2018;138:182–92. Epub 2018/06/12. doi: 10.1016/j.neuropharm.2018.06.011 29890190.
46. Lee KY, Jewett KA, Chung HJ, Tsai NP. Loss of Fragile X Protein FMRP Impairs Homeostatic Synaptic Downscaling through Tumor Suppressor p53 and Ubiquitin E3 Ligase Nedd4-2. Hum Mol Genet. 2018;27:2805–16. Epub 2018/05/18. doi: 10.1093/hmg/ddy189 29771335.
47. Ehrnhoefer DE, Skotte NH, Ladha S, Nguyen YT, Qiu X, Deng Y, et al. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Human molecular genetics. 2014;23(3):717–29. Epub 2013/09/28. doi: 10.1093/hmg/ddt458 24070868.
48. Gowran A, Campbell VA. A role for p53 in the regulation of lysosomal permeability by delta 9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J Neurochem. 2008;105(4):1513–24. Epub 2008/02/06. doi: 10.1111/j.1471-4159.2008.05278.x 18248609.
49. Hoshino A, Ariyoshi M, Okawa Y, Kaimoto S, Uchihashi M, Fukai K, et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(8):3116–21. Epub 2014/02/12. doi: 10.1073/pnas.1318951111 24516131; PubMed Central PMCID: PMC3939874.
50. Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS letters. 2014;588(16):2571–9. Epub 2014/04/22. doi: 10.1016/j.febslet.2014.04.014 24747423.
51. Watt KEN, Neben CL, Hall S, Merrill AE, Trainor PA. tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis—Cincinnati type. Hum Mol Genet. 2018. Epub 2018/05/12. doi: 10.1093/hmg/ddy172 29750247.
52. Farley-Barnes KI, McCann KL, Ogawa LM, Merkel J, Surovtseva YV, Baserga SJ. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number. Cell reports. 2018;22(7):1923–34. Epub 2018/02/15. doi: 10.1016/j.celrep.2018.01.056 29444442; PubMed Central PMCID: PMC5828527.
53. Fumagalli M, Bonfanti E, Daniele S, Zappelli E, Lecca D, Martini C, et al. The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization. Glia. 2015;63(12):2327–39. Epub 2015/08/01. doi: 10.1002/glia.22896 26228571.
54. Li Y, Stockton ME, Bhuiyan I, Eisinger BE, Gao Y, Miller JL, et al. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Science translational medicine. 2016;8(336):336ra61. Epub 2016/04/29. doi: 10.1126/scitranslmed.aad9370 27122614; PubMed Central PMCID: PMC4995450.
55. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, et al. A global map of p53 transcription-factor binding sites in the human genome. Cell. 2006;124(1):207–19. Epub 2006/01/18. doi: 10.1016/j.cell.2005.10.043 16413492.
56. Khoutorsky A, Sorge RE, Prager-Khoutorsky M, Pawlowski SA, Longo G, Jafarnejad SM, et al. eIF2alpha phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(42):11949–54. doi: 10.1073/pnas.1614047113 27698114.
57. Kinkl N, Sahel J, Hicks D. Alternate FGF2-ERK1/2 signaling pathways in retinal photoreceptor and glial cells in vitro. The Journal of biological chemistry. 2001;276(47):43871–8. Epub 2001/09/26. doi: 10.1074/jbc.M105256200 11571286.
58. Liu S, Wierod L, Skarpen E, Grosvik H, Duan G, Huitfeldt HS. EGF activates autocrine TGFalpha to induce prolonged egf receptor signaling and hepatocyte proliferation. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2013;32(3):511–22. Epub 2014/02/28/2013/09/07. doi: 10.1095/biolreprod.113.114876 10.1159/000354454. 24008581.
59. Wang H, Cheng H, Shao Q, Dong Z, Xie Q, Zhao L, et al. Leptin-promoted human extravillous trophoblast invasion is MMP14 dependent and requires the cross talk between Notch1 and PI3K/Akt signaling. Biology of reproduction. 2014;90(4):78. Epub 2013/10/08. doi: 10.1095/biolreprod.113.114876 24571988.
60. Tay KH, Jin L, Tseng HY, Jiang CC, Ye Y, Thorne RF, et al. Suppression of PP2A is critical for protection of melanoma cells upon endoplasmic reticulum stress. Cell death & disease. 2012;3:e337. Epub 2012/06/29. doi: 10.1038/cddis.2012.79 22739989; PubMed Central PMCID: PMC3388246.
61. Woo CW, Kutzler L, Kimball SR, Tabas I. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nature cell biology. 2012;14(2):192–200. Epub 2012/01/11. doi: 10.1038/ncb2408 22231169; PubMed Central PMCID: PMC3271190.
62. Aygun H. The effect of fluoxetine on penicillin-induced epileptiform activity. Epilepsy & behavior: E&B. 2019;95:79–86. Epub 2019/04/27. doi: 10.1016/j.yebeh.2019.03.050 31026788.
63. Prabhu S, Chabardes S, Sherdil A, Devergnas A, Michallat S, Bhattacharjee M, et al. Effect of subthalamic nucleus stimulation on penicillin induced focal motor seizures in primate. Brain stimulation. 2015;8(2):177–84. Epub 2014/12/17. doi: 10.1016/j.brs.2014.10.017 25511796.
64. Taskiran M, Tasdemir A, Ayyildiz N. Acute effects of aceclofenac, COX-2 inhibitor, on penicillin-induced epileptiform activity. Brain research bulletin. 2017;130:42–6. Epub 2016/12/27. doi: 10.1016/j.brainresbull.2016.12.010 28017780.
65. Hales CM, Rolston JD, Potter SM. How to culture, record and stimulate neuronal networks on micro-electrode arrays (MEAs). Journal of visualized experiments: JoVE. 2010;(39). Epub 2010/06/03. doi: 10.3791/2056 20517199; PubMed Central PMCID: PMC3152853.
66. Jewett KA, Taishi P, Sengupta P, Roy S, Davis CJ, Krueger JM. Tumor necrosis factor enhances the sleep-like state and electrical stimulation induces a wake-like state in co-cultures of neurons and glia. The European journal of neuroscience. 2015;42(4):2078–90. Epub 2015/06/04. doi: 10.1111/ejn.12968 26036796; PubMed Central PMCID: PMC4540611.
67. McSweeney KM, Gussow AB, Bradrick SS, Dugger SA, Gelfman S, Wang Q, et al. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome research. 2016;26(10):1411–6. Epub 2016/08/16. doi: 10.1101/gr.199828.115 27516621; PubMed Central PMCID: PMC5052052.
68. Luttjohann A, Fabene PF, van Luijtelaar G. A revised Racine's scale for PTZ-induced seizures in rats. Physiology & behavior. 2009;98(5):579–86. Epub 2009/09/24. doi: 10.1016/j.physbeh.2009.09.005 19772866.
69. Keith DJ, Sanderson JL, Gibson ES, Woolfrey KM, Robertson HR, Olszewski K, et al. Palmitoylation of A-kinase anchoring protein 79/150 regulates dendritic endosomal targeting and synaptic plasticity mechanisms. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012;32(21):7119–36. Epub 2012/05/25. doi: 10.1523/jneurosci.0784-12.2012 22623657; PubMed Central PMCID: PMC3367663.
70. Jewett KA, Zhu J, Tsai NP. The tumor suppressor p53 guides glua1 homeostasis through Nedd4-2 during chrnoic elevation of neuronal activity. J Neurochem. 2015;135(2):226–33. doi: 10.1111/jnc.13271 26250624
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 9
Nejčtenější v tomto čísle
- Origins of DNA replication
- Environmental and epigenetic regulation of Rider retrotransposons in tomato
- Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Temperature preference can bias parental genome retention during hybrid evolution