Ubiquitin-protein ligase Ubr5 cooperates with hedgehog signalling to promote skeletal tissue homeostasis
Autoři:
David Mellis aff001; Katherine A. Staines aff002; Silvia Peluso aff003; Ioanna Ch. Georgiou aff004; Natalie Dora aff003; Malgorzata Kubiak aff001; Rob van’t Hof aff005; Michela Grillo aff001; Colin Farquharson aff006; Elaine Kinsella aff001; Anna Thornburn aff003; Stuart H. Ralston aff005; Donald M. Salter aff005; Natalia A. Riobo-Del Galdo aff004; Robert E. Hill aff003; Mark Ditzel aff001
Působiště autorů:
Edinburgh CRUK Cancer Research Centre, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
aff001; School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
aff002; MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
aff003; Leeds Institute of Medical Research and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
aff004; Centre for Genomic and Experimental Medicine, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
aff005; Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
aff006
Vyšlo v časopise:
Ubiquitin-protein ligase Ubr5 cooperates with hedgehog signalling to promote skeletal tissue homeostasis. PLoS Genet 17(4): e1009275. doi:10.1371/journal.pgen.1009275
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009275
Souhrn
Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic samples revealed similar correlations between UBR5 expression, canonical HH signalling and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the HH signalling pathway.
Klíčová slova:
Cartilage – Ankle joints – Hedgehog signaling – Chondrocytes – Knee joints – Signal processing – Tendons – PKA signaling cascade
Zdroje
1. Hershko A, Ciechanover A, Rose IA. Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J Biol Chem. 1981;256(4):1525–8. Epub 1981/02/25. 6257674.
2. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335(25):1897–905. Epub 1996/12/19. doi: 10.1056/NEJM199612193352507 8948566.
3. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315(5809):201–5. Epub 2007/01/16. doi: 10.1126/science.1127085 17218518.
4. Schnell JD, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem. 2003;278(38):35857–60. Epub 2003/07/16. doi: 10.1074/jbc.R300018200 12860974.
5. Mansfield E, Hersperger E, Biggs J, Shearn A. Genetic and molecular analysis of hyperplastic discs, a gene whose product is required for regulation of cell proliferation in Drosophila melanogaster imaginal discs and germ cells. Dev Biol. 1994;165(2):507–26. Epub 1994/10/01. doi: 10.1006/dbio.1994.1271 7958417.
6. Lee JD, Amanai K, Shearn A, Treisman JE. The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development. 2002;129(24):5697–706. Epub 2002/11/08. doi: 10.1242/dev.00159 12421709.
7. Moncrieff S, Moncan M, Scialpi F, Ditzel M. Regulation of hedgehog Ligand Expression by the N-End Rule Ubiquitin-Protein Ligase Hyperplastic Discs and the Drosophila GSK3beta Homologue, Shaggy. PLoS One. 2015;10(9):e0136760. Epub 2015/09/04. doi: 10.1371/journal.pone.0136760 26334301; PubMed Central PMCID: PMC4559392.
8. Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, et al. Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev. 2014;133:117–25. Epub 2014/05/24. doi: 10.1016/j.mod.2014.05.002 24854243; PubMed Central PMCID: PMC4351657.
9. Kinsella E, Dora N, Mellis D, Lettice L, Deveney P, Hill R, et al. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development. PLoS One. 2016;11(6):e0157079. Epub 2016/06/15. doi: 10.1371/journal.pone.0157079 27299863; PubMed Central PMCID: PMC4907512.
10. Alman BA. The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol. 2015;11(9):552–60. Epub 2015/06/17. doi: 10.1038/nrrheum.2015.84 26077918.
11. Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):416–29. Epub 2013/05/31. doi: 10.1038/nrm3598 23719536.
12. Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA. Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol. 2014;33:81–92. Epub 2014/05/28. doi: 10.1016/j.semcdb.2014.05.007 24862854; PubMed Central PMCID: PMC4130743.
13. Pandit T, Ogden SK. Contributions of Noncanonical Smoothened Signaling During Embryonic Development. J Dev Biol. 2017;5(4). Epub 2018/02/06. doi: 10.3390/jdb5040011 29399514; PubMed Central PMCID: PMC5794034.
14. Riobo NA, Saucy B, Dilizio C, Manning DR. Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci U S A. 2006;103(33):12607–12. Epub 2006/08/04. doi: 10.1073/pnas.0600880103 16885213; PubMed Central PMCID: PMC1567926.
15. Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR. Smoothened is a fully competent activator of the heterotrimeric G protein G(i). Mol Pharmacol. 2013;83(3):691–7. Epub 2013/01/08. doi: 10.1124/mol.112.082511 23292797; PubMed Central PMCID: PMC3583497.
16. Polizio AH, Chinchilla P, Chen X, Kim S, Manning DR, Riobo NA. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J Biol Chem. 2011;286(22):19589–96. Epub 2011/04/09. doi: 10.1074/jbc.M110.197111 21474452; PubMed Central PMCID: PMC3103338.
17. Polizio AH, Chinchilla P, Chen X, Manning DR, Riobo NA. Sonic Hedgehog activates the GTPases Rac1 and RhoA in a Gli-independent manner through coupling of smoothened to Gi proteins. Sci Signal. 2011;4(200):pt7. Epub 2011/11/25. doi: 10.1126/scisignal.2002396 22114142; PubMed Central PMCID: PMC5811764.
18. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334. Epub 2013/01/04. doi: 10.1101/cshperspect.a008334 23284041; PubMed Central PMCID: PMC3579395.
19. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–86. Epub 1999/08/31. doi: 10.1101/gad.13.16.2072 10465785; PubMed Central PMCID: PMC316949.
20. Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000;127(3):543–8. Epub 2000/01/13. 10631175.
21. Yang J, Andre P, Ye L, Yang YZ. The Hedgehog signalling pathway in bone formation. Int J Oral Sci. 2015;7(2):73–9. Epub 2015/05/30. doi: 10.1038/ijos.2015.14 26023726; PubMed Central PMCID: PMC4817553.
22. Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development. 2014;141(18):3445–57. Epub 2014/09/04. doi: 10.1242/dev.083691 25183867; PubMed Central PMCID: PMC4197719.
23. Peng T, Frank DB, Kadzik RS, Morley MP, Rathi KS, Wang T, et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature. 2015;526(7574):578–82. Epub 2015/10/06. doi: 10.1038/nature14984 26436454; PubMed Central PMCID: PMC4713039.
24. Cholok D, Chung MT, Ranganathan K, Ucer S, Day D, Davis TA, et al. Heterotopic ossification and the elucidation of pathologic differentiation. Bone. 2018;109:12–21. Epub 2017/10/11. doi: 10.1016/j.bone.2017.09.019 28987285; PubMed Central PMCID: PMC6585944.
25. Regard JB, Malhotra D, Gvozdenovic-Jeremic J, Josey M, Chen M, Weinstein LS, et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med. 2013;19(11):1505–12. Epub 2013/10/01. doi: 10.1038/nm.3314 24076664; PubMed Central PMCID: PMC3917515.
26. Hopyan S, Nadesan P, Yu C, Wunder J, Alman BA. Dysregulation of hedgehog signalling predisposes to synovial chondromatosis. J Pathol. 2005;206(2):143–50. Epub 2005/04/19. doi: 10.1002/path.1761 15834844.
27. Lin AC, Seeto BL, Bartoszko JM, Khoury MA, Whetstone H, Ho L, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15(12):1421–5. Epub 2009/11/17. doi: 10.1038/nm.2055 19915594.
28. Zhou J, Chen Q, Lanske B, Fleming BC, Terek R, Wei X, et al. Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice. Arthritis Res Ther. 2014;16(1):R11. Epub 2014/01/17. doi: 10.1186/ar4437 24428864; PubMed Central PMCID: PMC3978435.
29. Saunders DN, Hird SL, Withington SL, Dunwoodie SL, Henderson MJ, Biben C, et al. Edd, the murine hyperplastic disc gene, is essential for yolk sac vascularization and chorioallantoic fusion. Mol Cell Biol. 2004;24(16):7225–34. Epub 2004/07/30. doi: 10.1128/MCB.24.16.7225-7234.2004 15282321; PubMed Central PMCID: PMC479729.
30. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002;33(2):77–80. Epub 2002/07/12. doi: 10.1002/gene.10092 12112875.
31. Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001;128(24):5099–108. Epub 2001/12/19. 11748145.
32. Xiao WF, Li YS, Deng A, Yang YT, He M. Functional role of hedgehog pathway in osteoarthritis. Cell Biochem Funct. 2020;38(2):122–9. Epub 2019/12/14. doi: 10.1002/cbf.3448 31833076.
33. Metzger H, Lindner E. The positive inotropic-acting forskolin, a potent adenylate cyclase activator. Arzneimittelforschung. 1981;31(8):1248–50. Epub 1981/01/01. 7197529.
34. Tasaki T, Sriram SM, Park KS, Kwon YT. The N-end rule pathway. Annu Rev Biochem. 2012;81:261–89. Epub 2012/04/25. doi: 10.1146/annurev-biochem-051710-093308 22524314; PubMed Central PMCID: PMC3610525.
35. Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 2014;24(10):603–11. Epub 2014/05/31. doi: 10.1016/j.tcb.2014.05.001 24874449.
36. Hakim DN, Pelly T, Kulendran M, Caris JA. Benign tumours of the bone: A review. J Bone Oncol. 2015;4(2):37–41. Epub 2015/11/19. doi: 10.1016/j.jbo.2015.02.001 26579486; PubMed Central PMCID: PMC4620948.
37. Oliva F, Via AG, Maffulli N. Physiopathology of intratendinous calcific deposition. BMC Med. 2012;10:95. Epub 2012/08/25. doi: 10.1186/1741-7015-10-95 22917025; PubMed Central PMCID: PMC3482552.
38. McCoy AM, Toth F, Dolvik NI, Ekman S, Ellermann J, Olstad K, et al. Articular osteochondrosis: a comparison of naturally-occurring human and animal disease. Osteoarthritis Cartilage. 2013;21(11):1638–47. Epub 2013/08/21. doi: 10.1016/j.joca.2013.08.011 23954774; PubMed Central PMCID: PMC3815567.
39. Carey JL, Wall EJ, Grimm NL, Ganley TJ, Edmonds EW, Anderson AF, et al. Novel Arthroscopic Classification of Osteochondritis Dissecans of the Knee: A Multicenter Reliability Study. Am J Sports Med. 2016;44(7):1694–8. Epub 2016/05/10. doi: 10.1177/0363546516637175 27159302.
40. Seaborne RA, Hughes DC, Turner DC, Owens DJ, Baehr LM, Gorski P, et al. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J Physiol. 2019;597(14):3727–49. Epub 2019/05/17. doi: 10.1113/JP278073 31093990.
41. Seaborne RA, Strauss J, Cocks M, Shepherd S, O’Brien TD, van Someren KA, et al. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Sci Rep. 2018;8(1):1898. Epub 2018/02/01. doi: 10.1038/s41598-018-20287-3 29382913; PubMed Central PMCID: PMC5789890.
42. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000;100(4):423–34. Epub 2000/02/29. doi: 10.1016/s0092-8674(00)80678-9 10693759.
43. Long J, Li B, Rodriguez-Blanco J, Pastori C, Volmar CH, Wahlestedt C, et al. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J Biol Chem. 2014;289(51):35494–502. Epub 2014/10/31. doi: 10.1074/jbc.M114.595348 25355313; PubMed Central PMCID: PMC4271234.
44. Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, et al. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 2014;20(7):732–40. Epub 2014/06/30. doi: 10.1038/nm.3613 24973920; PubMed Central PMCID: PMC4108909.
45. Martin RD, Sun Y, MacKinnon S, Cuccia L, Page V, Hebert TE, et al. Differential Activation of P-TEFb Complexes in the Development of Cardiomyocyte Hypertrophy following Activation of Distinct G Protein-Coupled Receptors. Mol Cell Biol. 2020;40(14). Epub 2020/04/29. doi: 10.1128/MCB.00048-20 32341082; PubMed Central PMCID: PMC7324848.
46. Feng H, Xing W, Han Y, Sun J, Kong M, Gao B, et al. Tendon-derived cathepsin K-expressing progenitor cells activate Hedgehog signaling to drive heterotopic ossification. J Clin Invest. 2020. Epub 2020/08/28. doi: 10.1172/JCI132518 32853181.
47. Carbe CJ, Cheng L, Addya S, Gold JI, Gao E, Koch WJ, et al. Gi proteins mediate activation of the canonical hedgehog pathway in the myocardium. Am J Physiol Heart Circ Physiol. 2014;307(1):H66–72. Epub 2014/05/13. doi: 10.1152/ajpheart.00166.2014 24816261; PubMed Central PMCID: PMC4080174.
48. Cheng L, Al-Owais M, Covarrubias ML, Koch WJ, Manning DR, Peers C, et al. Coupling of Smoothened to inhibitory G proteins reduces voltage-gated K(+) currents in cardiomyocytes and prolongs cardiac action potential duration. J Biol Chem. 2018;293(28):11022–32. Epub 2018/05/29. doi: 10.1074/jbc.RA118.001989 29802197; PubMed Central PMCID: PMC6052211.
49. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024. Epub 2016/03/22. doi: 10.1038/ncomms11024 26996322; PubMed Central PMCID: PMC4802171.
50. Singh R, Dhanyamraju PK, Lauth M. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget. 2017;8(1):833–45. Epub 2016/12/03. doi: 10.18632/oncotarget.13662 27903983; PubMed Central PMCID: PMC5352201.
51. Mukhopadhyay S, Rohatgi R. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol. 2014;33:63–72. Epub 2014/05/23. doi: 10.1016/j.semcdb.2014.05.002 24845016; PubMed Central PMCID: PMC4130902.
52. O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol. 2014;27:126–35. Epub 2014/02/11. doi: 10.1016/j.ceb.2014.01.005 24508914; PubMed Central PMCID: PMC4021379.
53. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71–85. Epub 2013/08/01. 25558171; PubMed Central PMCID: PMC4280562.
54. Martinez-Chinchilla P, Riobo NA. Purification and bioassay of hedgehog ligands for the study of cell death and survival. Methods Enzymol. 2008;446:189–204. Epub 2008/07/08. doi: 10.1016/S0076-6879(08)01611-X 18603123.
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 4
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Masturbační chování žen v ČR − dotazníková studie
- O krok blíže k pochopení efektu placeba při léčbě bolesti
Nejčtenější v tomto čísle
- Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription–replication conflict regions
- Functional assessment of the “two-hit” model for neurodevelopmental defects in Drosophila and X. laevis
- Pathways and signatures of mutagenesis at targeted DNA nicks
- Using genetic variants to evaluate the causal effect of cholesterol lowering on head and neck cancer risk: A Mendelian randomization study