Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity
Autoři:
Luís António Menezes Carreira aff001; Filipe Tostevin aff001; Ulrich Gerland aff002; Lotte Søgaard-Andersen aff001
Působiště autorů:
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
aff001; Physik-Department, Technische Universität München, James Franck Straße, Garching, Germany
aff002
Vyšlo v časopise:
Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008877
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008877
Souhrn
Cell polarity underlies key processes in all cells, including growth, differentiation and division. In the bacterium Myxococcus xanthus, front-rear polarity is crucial for motility. Notably, this polarity can be inverted, independent of the cell-cycle, by chemotactic signaling. However, a precise understanding of the protein network that establishes polarity and allows for its inversion has remained elusive. Here, we use a combination of quantitative experiments and data-driven theory to unravel the complex interplay between the three key components of the M. xanthus polarity module. By studying each of these components in isolation and their effects as we systematically reconstruct the system, we deduce the network of effective interactions between the polarity proteins. RomR lies at the root of this network, promoting polar localization of the other components, while polarity arises from interconnected negative and positive feedbacks mediated by the small GTPase MglA and its cognate GAP MglB, respectively. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and thus capable of polarity inversions. Our results have implications not only for the understanding of polarity and motility in M. xanthus but also, more broadly, for dynamic cell polarity.
Klíčová slova:
Cell cycle and cell division – Cell polarity – Fluorescence imaging – Fluorescence microscopy – Guanine nucleotide exchange factors – Guanosine triphosphatase – Mathematical models – Protein interaction networks
Zdroje
1. Rafelski SM, Marshall WF. Building the cell: design principles of cellular architecture. Nat Rev Mol Cell Biol. 2008;9:593. doi: 10.1038/nrm2460 18648373
2. Treuner-Lange A, Søgaard-Andersen L. Regulation of cell polarity in bacteria. J Cell Biol. 2014;206:7–17. doi: 10.1083/jcb.201403136 25002676
3. Laloux G, Jacobs-Wagner C. How do bacteria localize proteins to the cell pole? J Cell Sci. 2014;127:11–9. doi: 10.1242/jcs.138628 24345373
4. St Johnston D, Ahringer J. Cell Polarity in Eggs and Epithelia: Parallels and Diversity. Cell. 2010;141:757–74. doi: 10.1016/j.cell.2010.05.011 20510924
5. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9. doi: 10.1126/science.1092053 14657486
6. Schumacher D, Søgaard-Andersen L. Regulation of Cell Polarity in Motility and Cell Division in Myxococcus xanthus. Annu Rev Microbiol. 2017;71:61–78. doi: 10.1146/annurev-micro-102215-095415 28525300
7. Chau AH, Walter JM, Gerardin J, Tang C, Lim WA. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell. 2012;151:320–32. doi: 10.1016/j.cell.2012.08.040 23039994
8. Zhang Y, Guzzo M, Ducret A, Li YZ, Mignot T. A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. PLoS Genet. 2012;8:e1002872. doi: 10.1371/journal.pgen.1002872 22916026
9. Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA. 2001;98:6901–4. doi: 10.1073/pnas.121171698 11381130
10. Faure LM, Fiche JB, Espinosa L, Ducret A, Anantharaman V, Luciano J, et al. The mechanism of force transmission at bacterial focal adhesion complexes. Nature. 2016;539:530–5. doi: 10.1038/nature20121 27749817
11. Treuner-Lange A, Macia E, Guzzo M, Hot E, Faure LM, Jakobczak B, et al. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. J Cell Biol. 2015;210:243–56. doi: 10.1083/jcb.201412047 26169353
12. Jakobczak B, Keilberg D, Wuichet K, Søgaard-Andersen L. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus. PLoS Genet. 2015;11:e1005341. doi: 10.1371/journal.pgen.1005341 26132848
13. Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T. Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci USA. 2011;108:7559–64. doi: 10.1073/pnas.1101101108 21482768
14. Nan B, Chen J, Neu JC, Berry RM, Oster G, Zusman DR. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci USA. 2011;108:2498–503. doi: 10.1073/pnas.1018556108 21248229
15. Luciano J, Agrebi R, Le Gall AV, Wartel M, Fiegna F, Ducret A, et al. Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet. 2011;7:e1002268. doi: 10.1371/journal.pgen.1002268 21931562
16. Nan B, Mauriello EM, Sun IH, Wong A, Zusman DR. A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol. 2010;76:1539–54. doi: 10.1111/j.1365-2958.2010.07184.x 20487265
17. Mignot T, Shaevitz JW, Hartzell PL, Zusman DR. Evidence that focal adhesion complexes power bacterial gliding motility. Science. 2007;315:853–6. doi: 10.1126/science.1137223 17289998
18. Mignot T, Merlie JP Jr., Zusman DR. Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science. 2005;310:855–7. doi: 10.1126/science.1119052 16272122
19. Szadkowski D, Harms A, Carreira LAM, Wigbers M, Potapova A, Wuichet K, et al. Spatial control of the GTPase MglA by localized RomR-RomX GEF and MglB GAP activities enables Myxococcus xanthus motility. Nat Microbiol. 2019;4:1344–55. doi: 10.1038/s41564-019-0451-4 31110363
20. Keilberg D, Wuichet K, Drescher F, Søgaard-Andersen L. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLoS Genet. 2012;8:e1002951. doi: 10.1371/journal.pgen.1002951 23028358
21. Zhang Y, Franco M, Ducret A, Mignot T. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol. 2010;8:e1000430. doi: 10.1371/journal.pbio.1000430 20652021
22. Leonardy S, Miertzschke M, Bulyha I, Sperling E, Wittinghofer A, Søgaard-Andersen L. Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J. 2010;29:2276–89. doi: 10.1038/emboj.2010.114 20543819
23. Ridley AJ. Life at the leading edge. Cell. 2011;145:1012–22. doi: 10.1016/j.cell.2011.06.010 21703446
24. Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem. 2011;80:943–71. doi: 10.1146/annurev-biochem-062708-134043 21675921
25. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77. doi: 10.1016/j.cell.2007.05.018 17540168
26. Mauriello EM, Mouhamar F, Nan B, Ducret A, Dai D, Zusman DR, et al. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J. 2010;29:315–26. doi: 10.1038/emboj.2009.356 19959988
27. Hodgkin J, Kaiser D. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol Gen Genet. 1979;171:177–91.
28. Miertzschke M, Koerner C, Vetter IR, Keilberg D, Hot E, Leonardy S, et al. Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. EMBO J. 2011;30:4185–97. doi: 10.1038/emboj.2011.291 21847100
29. Leonardy S, Freymark G, Hebener S, Ellehauge E, Søgaard-Andersen L. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J. 2007;26:4433–44. doi: 10.1038/sj.emboj.7601877 17932488
30. Blackhart BD, Zusman DR. "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci USA. 1985;82:8767–70. doi: 10.1073/pnas.82.24.8767 3936045
31. Guzzo M, Murray SM, Martineau E, Lhospice S, Baronian G, My L, et al. A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus. Nat Microbiol. 2018;3:948–59. doi: 10.1038/s41564-018-0203-x 30013238
32. Kaimer C, Zusman DR. Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus. Mol Microbiol. 2013;88:740–53. doi: 10.1111/mmi.12219 23551551
33. Friedrich C, Bulyha I, Søgaard-Andersen L. Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J Bacteriol. 2014;196:378–90. doi: 10.1128/JB.01094-13 24187092
34. Bulyha I, Schmidt C, Lenz P, Jakovljevic V, Hone A, Maier B, et al. Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol. 2009;74:691–706. doi: 10.1111/j.1365-2958.2009.06891.x 19775250
35. Chiou JG, Balasubramanian MK, Lew DJ. Cell Polarity in Yeast. Annual review of cell and developmental biology. 2017;33:77–101. doi: 10.1146/annurev-cellbio-100616-060856 28783960
36. Lutkenhaus J. The ParA/MinD family puts things in their place. Trends in microbiology. 2012;20:411–8. doi: 10.1016/j.tim.2012.05.002 22672910
37. Li R, Bowerman B. Symmetry breaking in biology. Cold Spring Harb Perspect Biol. 2010;2:a003475. doi: 10.1101/cshperspect.a003475 20300216
38. Wu CF, Lew DJ. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol. 2013;23:476–83. doi: 10.1016/j.tcb.2013.05.003 23731999
39. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403:339–42. doi: 10.1038/35002131 10659857
40. Hillenbrand P, Fritz G, Gerland U. Biological Signal Processing with a Genetic Toggle Switch. PLoS ONE. 2013;8:e68345. doi: 10.1371/journal.pone.0068345 23874595
41. Simoes S, Denholm B, Azevedo D, Sotillos S, Martin P, Skaer H, et al. Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development (Cambridge, England). 2006;133:4257–67.
42. Jenkins N, Saam JR, Mango SE. CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science. 2006;313:1298–301. doi: 10.1126/science.1130291 16873611
43. Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol. 2008;9:846–59. doi: 10.1038/nrm2521 18946474
44. Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17:496–510. doi: 10.1038/nrm.2016.67 27301673
45. Um K, Niu S, Duman JG, Cheng JX, Tu YK, Schwechter B, et al. Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. Dev Cell. 2014;29:701–15. doi: 10.1016/j.devcel.2014.05.011 24960694
46. Park J, Holmes WR, Lee SH, Kim HN, Kim DH, Kwak MK, et al. Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A. 2017;114:E5750–e9. doi: 10.1073/pnas.1700054114 28655842
47. Holmes WR, Park J, Levchenko A, Edelstein-Keshet L. A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns. PLoS computational biology. 2017;13:e1005524. doi: 10.1371/journal.pcbi.1005524 28472054
48. Hodgkin J, Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA. 1977;74:2938–42. doi: 10.1073/pnas.74.7.2938 16592422
49. Shi X, Wegener-Feldbrügge S, Huntley S, Hamann N, Hedderich R, Søgaard-Andersen L. Bioinformatics and Experimental Analysis of Proteins of Two-Component Systems in Myxococcus xanthus. J Bacteriol. 2008;190:613–24. doi: 10.1128/JB.01502-07 17993514
50. Sambrook J. Molecular Cloning: A Laboratory Manual, Third Edition: Cold Spring Harbor Laboratory Press; 2001.
51. Iniesta AA, García-Heras F, Abellón-Ruiz J, Gallego-García A, Elías-Arnanz M. Two Systems for Conditional Gene Expression in Myxococcus xanthus Inducible by Isopropyl-β-Thiogalactopyranoside or Vanillate. J Bacteriol. 2012;194:5875–85. doi: 10.1128/JB.01110-12 22923595
52. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. doi: 10.1038/nmeth.2019 22743772
53. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, et al. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol. 2016;99:767–77. doi: 10.1111/mmi.13264 26538279
54. Baranwal J, Lhospice S, Kanade M, Chakraborty S, Gade PR, Harne S, et al. Allosteric regulation of a prokaryotic small Ras-like GTPase contributes to cell polarity oscillations in bacterial motility. PLoS Biology. 2019;17:e3000459. doi: 10.1371/journal.pbio.3000459 31560685
55. Ahnert K, Mulansky M. Odeint–Solving Ordinary Differential Equations in C++. AIP Conf Proc. 2011;1389:1586–9.
56. Fasano G, Franceschini A. A multidimensional version of the Kolmogorov–Smirnov test. Monthly Notices of the Royal Astronomical Society. 1987;225:155–70.
57. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.
58. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C: The Art of Scientific Computing, Second Edition: Cambridge University Press; 1992. 994 p.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Masturbační chování žen v ČR − dotazníková studie
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
Nejčtenější v tomto čísle
- Osteocalcin promotes bone mineralization but is not a hormone
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis