-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaIndependent validation of experimental results requires timely and unrestricted access to animal models and reagents
Authors: Cassandra R. Diegel aff001; Steven Hann aff002; Ugur M. Ayturk aff002; Jennifer C. W. Hu aff002; Kyung-eun Lim aff004; Casey J. Droscha aff001; Zachary B. Madaj aff005; Gabrielle E. Foxa aff001; Isaac Izaguirre aff001; aff006; Alexander G. Robling aff004; Matthew L. Warman aff002; Bart O. Williams aff001
Authors place of work: Program in Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America aff001; Orthopedic Research Labs, Boston Children’s Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America aff002; Musculoskeletal Integrity Program, Hospital for Special Surgery Research Institute, New York, New York, United States of America aff003; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America aff004; Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America aff005; Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America aff006
Published in the journal: Independent validation of experimental results requires timely and unrestricted access to animal models and reagents. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008940
Category: Formal Comment
doi: https://doi.org/10.1371/journal.pgen.1008940We used CRISPR/Cas9 gene editing to create mice that are lacking Bglap and Bglap2, which encode osteocalcin [1]. We did not find evidence of increased bone mass, elevated blood glucose levels, or reduced male fertility in our mice [1], which contrasts to what Dr. Karsenty has reported [2–4]. Another group of investigators, working independently of us, created a third Bglap and Bglap2 mouse knockout strain and also failed to substantiate Dr. Karsenty’s results [5]. Furthermore, the osteocalcin-null rat model did not develop obesity, insulin resistance, or glucose intolerance, which conflicts with Dr. Karsenty’s mice [6].
We are pleased that after 24 years Dr. Karsenty has finally made available through JAX the osteocalcin knockout strain he published in 1996. Dr. Karsenty could have donated these mice to JAX, to serve as easy to obtain positive and negative controls for interested investigators, much sooner. Of note, he only submitted these mice to JAX in October 2019, two months after we posted our paper on bioRxiv, and they became available only as cryopreserved stocks the day after our paper was published in PLOS Genetics. Specific to the multiple claimed roles of osteocalcin, we urge Dr. Karsenty to also donate his conditional (i.e., floxed) osteocalcin knockout strain since he used that strain as an important independent control in other experiments [4]. These strains along with our knockout mice, which we shipped to JAX on June 17, 2020 after lifting of COVID-19-related shipping restrictions, should enable other independent investigators to study the endogenous role of osteocalcin in vivo.
Contrary to what Dr. Karsenty has written, we recognize bone as an endocrine organ as we clearly indicate in our Authors’ Summary [1]. We make no claims regarding whether or not osteocalcin is a hormone. We cannot comment on the protein’s effect when given exogenously, since we did not inject osteocalcin into mice in our study. However, we [1], and others [5–7], found no evidence that supports an endogenous hormonal role for osteocalcin. Should Dr. Karsenty make available batches of his biologically-active osteocalcin without restriction, interested parties could avoid the potential confounder of reagent quality [8] and assess objectively whether osteocalcin has a hormonal role when administered exogenously.
This is not the first time that some of us (CRD, AGR, MLW, and BOW) published data that did not support findings published by Dr. Karsenty. Dr. Karsenty reported that LRP5 controls bone mass by inhibiting serotonin synthesis in the duodenum [9,10]. We found no evidence for this mechanism [11,12]. Of interest, another group studying a larger cohort of patients with the same LRP5 mutation that Dr. Karsenty reported in his original paper [9] could not replicate his findings regarding circulating levels of serotonin [13]. We donated the mice we created for our paper [11] to JAX (Stock numbers 026269, 012668, 012669, 012670, 012671, 012672). The mice created by Dr. Karsenty and used in his experiments still have not been supplied to JAX to our knowledge.
We recognize the importance of fostering integrity in research [14]. This is why we have consistently donated mice we created to JAX for public distribution. We look forward to other investigators using our and Dr. Karsenty’s mice to determine the endogenous role of osteocalcin, meeting the standards of transparency, rigor, and reproducibility upon which the scientific and medical communities rely.
Zdroje
1. Diegel CR, Hann S, Ayturk UM, Hu JCW, Lim KE, et al. (2020) An osteocalcin-deficient mouse strain without endocrine abnormalities. PLoS Genet 16: e1008361. doi: 10.1371/journal.pgen.1008361 32463812
2. Ducy P, Desbois C, Boyce B, Pinero G, Story B, et al. (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382 : 448–452. doi: 10.1038/382448a0 8684484
3. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130 : 456–469. doi: 10.1016/j.cell.2007.05.047 17693256
4. Oury F, Sumara G, Sumara O, Ferron M, Chang H, et al. (2011) Endocrine regulation of male fertility by the skeleton. Cell 144 : 796–809. doi: 10.1016/j.cell.2011.02.004 21333348
5. Moriishi T, Ozasa R, Ishimoto T, Nakano T, Hasegawa T, et al. (2020) Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet 16: e1008586. doi: 10.1371/journal.pgen.1008586 32463816
6. Lambert LJ, Challa AK, Niu A, Zhou L, Tucholski J, et al. (2016) Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Model Mech 9 : 1169–1179. doi: 10.1242/dmm.025247 27483347
7. Fowlkes JL, Clay Bunn R, Kalaitzoglou E, Ray P, Popescu I, et al. (2020) Postnatal loss of the insulin receptor in osteoprogenitor cells does not impart a metabolic phenotype. Sci Rep 10 : 8842. doi: 10.1038/s41598-020-65717-3 32483283
8. von Herrath M, Pagni PP, Grove K, Christoffersson G, Tang-Christensen M, et al. (2019) Case Reports of Pre-clinical Replication Studies in Metabolism and Diabetes. Cell Metab 29 : 795–802. doi: 10.1016/j.cmet.2019.02.004 30879984
9. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, et al. (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135 : 825–837. doi: 10.1016/j.cell.2008.09.059 19041748
10. Kode A, Obri A, Paone R, Kousteni S, Ducy P, et al. (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20 : 1228–1229. doi: 10.1038/nm.3698 25375916
11. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, et al. (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17 : 684–691. doi: 10.1038/nm.2388 21602802
12. Cui Y, Niziolek PJ, MacDonald BT, Alenina N, Matthes S, et al. (2014) Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nat Med 20 : 1229–1230. doi: 10.1038/nm.3697 25375917
13. Lee GS, Simpson C, Sun BH, Yao C, Foer D, et al. (2014) Measurement of plasma, serum, and platelet serotonin in individuals with high bone mass and mutations in LRP5. J Bone Miner Res 29 : 976–981. doi: 10.1002/jbmr.2086 24038240
14. National Academies of Sciences Engineering and Medicine (U.S.). Committee on Responsible Science, Committee on Science Engineering Medicine and Public Policy (U.S.) (2017) Fostering integrity in research. 1 online resource (1 PDF file (xv, 307 pages)) p.
Článek Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolismČlánek GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiationČlánek The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 6- Psilocybin je v Česku od 1. ledna 2026 schválený. Co to znamená v praxi?
- Vakcinace stojí díky inovativním technologiím na prahu nové éry
- Návykové látky a prekurzory v magistraliter receptuře
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
-
Všechny články tohoto čísla
- Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior
- Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses
- JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Regulation of olfactory-based sex behaviors in the silkworm by genes in the sex-determination cascade
- Osteocalcin promotes bone mineralization but is not a hormone
- A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5
- Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks
- Age-of-onset information helps identify 76 genetic variants associated with allergic disease
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure
- Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves
- Transcriptomic stratification of late-onset Alzheimer's cases reveals novel genetic modifiers of disease pathology
- Alpha- and beta-adrenergic octopamine receptors in muscle and heart are required for Drosophila exercise adaptations
- Identification of Clec4b as a novel regulator of bystander activation of auto-reactive T cells and autoimmune disease
- Exclusive breastfeeding can attenuate body-mass-index increase among genetically susceptible children: A longitudinal study from the ALSPAC cohort
- Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development
- BRM-SWI/SNF chromatin remodeling complex enables functional telomeres by promoting co-expression of TRF2 and TRF1
- MYO5B mutations in pheochromocytoma/paraganglioma promote cancer progression
- Genetic analysis of osteoblast activity identifies Zbtb40 as a regulator of osteoblast activity and bone mass
- In vivo modeling of metastatic human high-grade serous ovarian cancer in mice
- GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiation
- The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii
- An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons
- BK channel density is regulated by endoplasmic reticulum associated degradation and influenced by the SKN-1A/NRF1 transcription factor
- Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3′UTR intron-containing NMD targets
- Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
- Control of mRNA translation by dynamic ribosome modification
- ROS regulation of RAS and vulva development in Caenorhabditis elegans
- The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae
- yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis
- Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections
- The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants
- Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation
- Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits
- Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity
- A Bayesian method to estimate variant-induced disease penetrance
- NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways
- Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods
- Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae
- Phylogenetic background and habitat drive the genetic diversification of Escherichia coli
- VolcanoFinder: Genomic scans for adaptive introgression
- Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson’s disease through mitochondrial dysfunction
- Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish)
- Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling
- Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity
- Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes
- Regulation of epithelial integrity and organ growth by Tctp and Coracle in Drosophila
- The brachyceran de novo gene PIP82, a phosphorylation target of aPKC, is essential for proper formation and maintenance of the rhabdomeric photoreceptor apical domain in Drosophila
- Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae
- All three mammalian MutL complexes are required for repeat expansion in a mouse cell model of the Fragile X-related disorders
- Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase
- The facts of the matter: What is a hormone?
- Lack of reproducibility in osteocalcin-deficient mice
- Independent validation of experimental results requires timely and unrestricted access to animal models and reagents
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Osteocalcin promotes bone mineralization but is not a hormone
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání