Exosome-mediated apoptosis pathway during WSSV infection in crustacean mud crab
Autoři:
Yi Gong aff001; Tongtong Kong aff001; Xin Ren aff001; Jiao Chen aff001; Shanmeng Lin aff001; Yueling Zhang aff001; Shengkang Li aff001
Působiště autorů:
Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
aff001; Institute of Marine Sciences, Shantou University, Shantou, China
aff002; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
aff003; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
aff004
Vyšlo v časopise:
Exosome-mediated apoptosis pathway during WSSV infection in crustacean mud crab. PLoS Pathog 16(5): e32767. doi:10.1371/journal.ppat.1008366
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008366
Souhrn
MicroRNAs are regulatory molecules that can be packaged into exosomes to modulate cellular response of recipients. While the role of exosomes during viral infection is beginning to be appreciated, the involvement of exosomal miRNAs in immunoregulation in invertebrates has not been addressed. Here, we observed that exosomes released from WSSV-injected mud crabs could suppress viral replication by inducing apoptosis of hemocytes. Besides, miR-137 and miR-7847 were found to be less packaged in mud crab exosomes during viral infection, with both miR-137 and miR-7847 shown to negatively regulate apoptosis by targeting the apoptosis-inducing factor (AIF). Our data also revealed that AIF translocated to the nucleus to induce DNA fragmentation, and could competitively bind to HSP70 to disintegrate the HSP70-Bax (Bcl-2-associated X protein) complex, thereby activating the mitochondria apoptosis pathway by freeing Bax. The present finding therefore provides a novel mechanism that underlies the crosstalk between exosomal miRNAs and apoptosis pathway in innate immune response in invertebrates.
Klíčová slova:
Apoptosis – Crabs – Exosomes – Hemocytes – Invertebrates – MicroRNAs – Mitochondria – Viral transmission and infection
Zdroje
1. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002; 2(8):569–579. doi: 10.1038/nri855 12154376
2. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc in Cell Biol. 2006; 3(22):1–29.
3. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Controll Release. 2015; 219:278–294.
4. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9(6):654–659. doi: 10.1038/ncb1596 17486113
5. Bobrie A, Colombo M, Krumeich S, Raposo Ga, Théry C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 2012; 1(1):18397.
6. Bobrie A, Théry C. Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans. 2013; 41(1):263–267. doi: 10.1042/BST20120245 23356294
7. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012; 1820(7):940–948. doi: 10.1016/j.bbagen.2012.03.017 22503788
8. Marta A, Maria A. Exosome biogenesis, regulation, and function in viral infection. Viruses. 2015; 7(9):5066–5083. doi: 10.3390/v7092862 26393640
9. Harendra C, Xiaoyong B, Antonella C. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses. 2015; 7(6):3204–3225. doi: 10.3390/v7062770 26102580
10. Marisa M, Chioma O. Exosomes: implications in HIV-1 pathogenesis. Viruses. 2015; 7(7):4093–4118. doi: 10.3390/v7072810 26205405
11. Zhu X, He Z, Yuan J, Wen W, Huang X, Hu Yiwen, et al. Ifitm3-containing exosome as a novel mediator for anti-viral response in dengue virus infection. Cell Microbiol. 2015; 17(1):105–118. doi: 10.1111/cmi.12339 25131332
12. Victor A. The functions of animal microRNAs. Nature. 2004; 431(7006):350–355. doi: 10.1038/nature02871 15372042
13. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005; 30(2):106–114. doi: 10.1016/j.tibs.2004.12.007 15691656
14. Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell. 2007; 130(1):101–112. doi: 10.1016/j.cell.2007.04.037 17632058
15. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J. 2014; 23(16):3356–3364.
16. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014; 124(5):2136–2146. doi: 10.1172/JCI70577 24743145
17. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015; 17(2):183–193. doi: 10.1038/ncb3094 25621950
18. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al.Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013; 14(1):319–333.
19. Gurwitz D. Exosomal microRNAs in tissue crosstalk. Drug Dev Res. 2015; 76(6):259–262. doi: 10.1002/ddr.21264 26303125
20. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinf. 2015; 13(1):17–24.
21. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 2014; 8(5):1432–1446. doi: 10.1016/j.celrep.2014.07.035 25159140
22. Zhang X, Huang C, Tang X, Ying Z, Hew CL. Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins. 2004; 55(2):229–235. doi: 10.1002/prot.10640 15048816
23. Corbel V, Zuprizal Z, Shi C, Huang, Sumartono, Arcier JM, et al. Experimental infection of european crustaceans with white spo syndrome virus (WSSV). J Fish Dis. 2001; 24(7):377–382.
24. Rowley AF, Powell A. Invertebrate immune systems-specific, quasi-specific, or nonspecific? J Immunol. 2007; 179(11):7209–7214. doi: 10.4049/jimmunol.179.11.7209 18025161
25. Zhou X, Wenbo J, Zhongshun L, Shuai L, Xiaozhen L. Virus infection and death receptor-mediated apoptosis. Viruses. 2017; 9(11):316–335.
26. Clarke P, Tyler KL. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol. 2009; 7(2):144–155. doi: 10.1038/nrmicro2071 19148180
27. Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics. 2016; 13(3):535–546. doi: 10.1007/s13311-016-0450-6 27324390
28. Bajt ML, Cover C, Lemasters JJ, Jaeschke H. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxiol Sci. 2006; 94(1):217–225.
29. Simons M, Raposo Ga. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009; 21(4):575–581. doi: 10.1016/j.ceb.2009.03.007 19442504
30. Liu Z, Zhang X, Yu Q, He JJ. Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun. 2014; 455(3–4):218–222. doi: 10.1016/j.bbrc.2014.10.146 25449270
31. Cosset FL, Dreux M. HCV transmission by hepatic exosomes establishes a productive infection. J Hepatol. 2014; 60(3):674–675. doi: 10.1016/j.jhep.2013.10.015 24512825
32. Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, et al. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev. 2016; 30(14):1658–1670. doi: 10.1101/gad.284604.116 27474443
33. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, et al. HIV nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T Cells. Traffic. 2010; 11(1):110–122. doi: 10.1111/j.1600-0854.2009.01006.x 19912576
34. Boorn JGVD, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. 2012; 65(3):331–335. doi: 10.1016/j.addr.2012.06.011 22750807
35. Maemura T, Fukuyama S, Sugita Y, Lopes TJS, Nakao T, Noda T, et al. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis. 2018; 217(9):1372–1382. doi: 10.1093/infdis/jiy035 29373693
36. Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernås M, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PloS ONE. 2010; 5(12):e15353. doi: 10.1371/journal.pone.0015353 21179422
37. Fu Y, Zhang L, Zhang F, Tang T, Zhou Q, Feng C, et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. Plos Pathogens. 2017; 13(9):e1006611. doi: 10.1371/journal.ppat.1006611 28910400
38. Qian X, Xu C, Fang S, Zhao P, Wang Y, Liu H, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit Hepatitis C virus infection. Stem Cell Transl Med. 2016; 5(9):1190–1203.
39. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012; 109(31): 12278–12279.
40. Zhu X, Li Y, Shen H, Li H, Long L, Hui L, et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett. 2013; 587(1):73–81. doi: 10.1016/j.febslet.2012.11.004 23178712
41. Guo J, Xia B, Meng F, Lou G. miR-137 suppresses cell growth in ovarian cancer by targeting AEG-1. Biochem Biophys Res Commun. 2013; 441(2):357–363. doi: 10.1016/j.bbrc.2013.10.052 24144591
42. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett. 2000; 476(3):118–123. doi: 10.1016/s0014-5793(00)01731-2 10913597
43. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999; 397(6718):441–446. doi: 10.1038/17135 9989411
44. Yu C, Meng Y, Wang C, Yang A. AIF is one of the critical mitochondrial proteins to mediate nuclear apoptosis. Prog Biochem Biophys. 2002; 29(2):177–179.
45. Lorenzo HK, Susin SA. Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Updat. 2007; 10(6): 235–255. doi: 10.1016/j.drup.2007.11.001 18180198
46. Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J. 2014; 23(23):4679–4689.
47. Qu X, Ding X, Duan M, Yang J, Lin R, Zhou Z, et al. Influenza virus infection induces translocation of apoptosis-inducing factor (AIF) in A549 cells: role of AIF in apoptosis and viral propagation. Arch Virol. 2017; 162(3):669–675. doi: 10.1007/s00705-016-3151-x 27853862
48. Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic. 2010; 9(6):871–881.
49. Tassetto M, Kunitomi M, Andino R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017; 169(2):314–325. doi: 10.1016/j.cell.2017.03.033 28388413
50. Brasset E, Taddei AR, Arnaud F, Faye B, Fausto AM, Mazzini M, et al. Viral particles of the endogenous retrovirus ZAM from Drosophila melanogasteruse a pre-existing endosome/exosome pathway for transfer to the oocyte. Retrovirology. 2006; 3(1):25–34.
51. Flynt AS, Greimann JC, Chung WJ, Lima CD, Lai EC. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol Cell. 2010; 38(6):900–907. doi: 10.1016/j.molcel.2010.06.014 20620959
52. Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2(-Delta Delta Ct) calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol. 2006; 15(1):56–61. doi: 10.1097/00019606-200603000-00009 16531770
53. Gong Y, Ju C, Zhang X. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp. Fish Shellfish Immunol. 2015; 46(2):516–522. doi: 10.1016/j.fsi.2015.07.022 26220644
54. Liu W, Han F, Zhang X. Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin. J Proteome Res. 2009; 8(3):1198–1206. doi: 10.1021/pr800840x 19166347
55. Shu L, Zhang X. Shrimp miR-12 suppresses white spot syndrome virus infection by synchronously triggering antiviral phagocytosis and apoptosis pathways. Front Immunol. 2017; 8:855. doi: 10.3389/fimmu.2017.00855 28824612
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 5
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
Nejčtenější v tomto čísle
- The hallmarks of COVID-19 disease
- Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii
- Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells
- Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2