Ammonium transceptors: Novel regulators of fungal development
Autoři:
Bert van den Berg aff001; Siobhan Lister aff001; Julian C. Rutherford aff001
Působiště autorů:
Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
aff001
Vyšlo v časopise:
Ammonium transceptors: Novel regulators of fungal development. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1008059
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008059
Zdroje
1. Paul JA, Wallen RM, Zhao C, Shi T, Perlin MH. Coordinate regulation of Ustilago maydis ammonium transporters and genes involved in mating and pathogenicity. Fungal Biol. 2018;122(7):639–50. doi: 10.1016/j.funbio.2018.03.011 29880199
2. Shnaiderman C, Miyara I, Kobiler I, Sherman A, Prusky D. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Mol Plant Microbe Interact. 2013;26(3):345–55. doi: 10.1094/MPMI-07-12-0170-R 23387470
3. Andrade SL, Einsle O. The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol. 2007;24(5–6):357–65. doi: 10.1080/09687680701388423 17710640
4. Lorenz MC, Heitman J. MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 1998;17(5):1236–47. doi: 10.1093/emboj/17.5.1236 9482721
5. Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol. 2003;50(1):259–75. doi: 10.1046/j.1365-2958.2003.03680.x 14507379
6. Biswas K, Morschhäuser J. The Mep2 ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol. 2005;56(3):649–69. doi: 10.1111/j.1365-2958.2005.04576.x 15819622
7. Rutherford JC, Lin X, Nielsen K, Heitman J. Amt2 permease is required to induce ammonium responsive invasive growth and mating in Cryptococcus neoformans. Eukaryot Cell. 2008;7(2):237–46. doi: 10.1128/EC.00079-07 18055915
8. Teichert S, Rutherford JC, Wottawa M, Heitman J, Tudzynski B. Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot Cell. 2008;7(2):187–201. doi: 10.1128/EC.00351-07 18083831
9. Javelle A, Morel M, Rodríguez-Pastrana BR, Botton B, André B, Marini AM, et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol. 2003;47(2):411–30. doi: 10.1046/j.1365-2958.2003.03303.x 12519192
10. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell. 2008;19(7):3028–39. doi: 10.1091/mbc.E08-01-0033 18434596
11. Boeckstaens M, André B, Marini AM. Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. J Biol Chem. 2008;283(31):21362–70. doi: 10.1074/jbc.M801467200 18508774
12. Van Nuland A, Vandormael P, Donaton M, Alenquer M, Lourenço A, Quintino E, et al. Ammonium permease based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Mol Microbiol. 2006;59(5):1485–505. doi: 10.1111/j.1365-2958.2005.05043.x 16468990
13. Dabas N, Schneider S, Morschhäuser J. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot Cell. 2009;8(2):147–60. doi: 10.1128/EC.00229-08 19060183
14. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, et al. Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A. 2010;107(21):9638–43. doi: 10.1073/pnas.1003587107 20457942
15. Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science. 2004;305(5690):1587–94. doi: 10.1126/science.1101952 15361618
16. Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li XD. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci U S A. 2004;101(49):17090–5. doi: 10.1073/pnas.0406475101 15563598
17. Andrade SL, Dickmanns A, Ficner R, Einsle O. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci U S A. 2005;102(42):14994–9. doi: 10.1073/pnas.0506254102 16214888
18. Javelle A, Lupo D, Zheng L, Li XD, Winkler FK, Merrick M. An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J Biol Chem. 2006;281(51):39492–8. doi: 10.1074/jbc.M608325200 17040913
19. van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, Rutherford JC. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nat Commun. 2016;7:11337. doi: 10.1038/ncomms11337 27088325
20. Thomas G, Coutts G, Merrick M. The glnKamtB operon. A conserved gene pair in prokaryotes. Trends Genet. 2000;16(1):11–4. doi: 10.1016/s0168-9525(99)01887-9 10637624
21. Boeckstaens M, Merhi A, Llinares E, Van Vooren P, Springael JY, Wintjens R, et al. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32. PLoS Genet. 2015;11(7):e1005382. doi: 10.1371/journal.pgen.1005382 26172854
22. Baday S, Orabi EA, Wang S, Lamoureux G, Bernèche S. Mechanism of NH4(+) Recruitment and NH3 Transport in Rh Proteins. Structure. 2015;23(8):1550–7. doi: 10.1016/j.str.2015.06.010 26190573
23. Wacker T, Garcia-Celma JJ, Lewe P1, Andrade SL. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins. Proc Natl Acad Sci U S A. 2014;111(27):9995–10000. doi: 10.1073/pnas.1406409111 24958855
24. Neuhäuser B, Ludewig U. Uncoupling of ionic currents from substrate transport in the plant ammonium transporter AtAMT1;2. J Biol Chem. 2014;289(17):11650–5. doi: 10.1074/jbc.C114.552802 24634212
25. Ludewig U, von Wirén N, Frommer WB. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem. 2002;277(16):13548–55. doi: 10.1074/jbc.M200739200 11821433
26. Mayer M, Dynowski M, Ludewig U. Ammonium ion transport by the AMT/Rh homologue LeAMT1;1. Biochem J. 2006;396(3):431–7. doi: 10.1042/BJ20060051 16499477
27. Mayer M, Ludewig U. Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. Plant Biol (Stuttg). 2006;8(4):522–8. 16917981
28. Søgaard R, Alsterfjord M, Macaulay N, Zeuthen T. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH. Pflugers Arch. 2009;458(4):733–43. doi: 10.1007/s00424-009-0665-z 19340454
29. Wang S, Orabi EA, Baday S, Bernèche S, Lamoureux G. Ammonium transporters achieve charge transfer by fragmenting their substrate. J Am Chem Soc. 2012;134(25):10419–27. doi: 10.1021/ja300129x 22631217
30. Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E, Fernández E, et al. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. Sci Adv. 2018;4(9):eaar3599. doi: 10.1126/sciadv.aar3599 30214933
31. Thevelein JM, Voordeckers K. Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol. 2009;26(11):2407–14. doi: 10.1093/molbev/msp168 19651853
32. Holsbeeks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM. The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci. 2004;29(10):556–64. doi: 10.1016/j.tibs.2004.08.010 15450611
33. Bowman EJ, O'Neill FJ, Bowman BJ. Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem. 1997;272(23):14776–86. doi: 10.1074/jbc.272.23.14776 9169444
34. Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio. 2011;2(3):e00055–11. doi: 10.1128/mBio.00055-11 21586647
35. Minc N, Chang F. Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr Biol. 2010;20(8):710–6. doi: 10.1016/j.cub.2010.02.047 20362451
36. Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG, Gold SE. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol. 2004;49(4):274–81. doi: 10.1007/s00284-004-4315-6 15386116
37. Rane HS, Bernardo SM, Raines SM, Binder JL, Parra KJ, Lee SA. Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. Eukaryot Cell. 2013;12(10):1369–82. doi: 10.1128/EC.00118-13 23913543
38. Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, et al. Global gene deletion analysis exploring yeast filamentous growth. Science. 2012;337(6100):1353–6. doi: 10.1126/science.1224339 22984072
39. Marini AM, Boeckstaens M, Benjelloun F, Chérif-Zahar B, André B. Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters. Curr Genet. 2006;49(6):364–74. doi: 10.1007/s00294-006-0062-5 16477434
40. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992;68(6):1077–90. doi: 10.1016/0092-8674(92)90079-r 1547504
41. Oh Y, Robertson SL, Parker J, Muddiman DC, Dean RA. Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Sci. 2017;15:20. doi: 10.1186/s12953-017-0128-y 29158724
42. López-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell. 2010;22(7):2459–75. doi: 10.1105/tpc.110.075937 20639450
43. Jiang J, Zhao J, Duan W, Tian S, Wang X, Zhuang H, et al. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC Plant Biol. 2019;19(1):239. doi: 10.1186/s12870-019-1841-8 31170918
44. Yang F, Li W, Jørgensen HJ. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PLoS ONE. 2013;8(11):e81606. doi: 10.1371/journal.pone.0081606 24303057
45. Lanver D, Müller AN, Happel P, Schweizer G, Haas FB, Franitza M, et al. The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. Plant Cell. 2018;30(2):300–23. doi: 10.1105/tpc.17.00764 29371439
46. Sriram K, Insel PA. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol Pharmacol. 2018;93(4):251–8. doi: 10.1124/mol.117.111062 29298813
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 11
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Měli bychom postcovidový syndrom léčit antidepresivy?
- Farmakovigilanční studie perorálních antivirotik indikovaných v léčbě COVID-19
- 10 bodů k očkování proti COVID-19: stanovisko České společnosti alergologie a klinické imunologie ČLS JEP
Nejčtenější v tomto čísle
- Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2
- Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages
- Activation of Shigella flexneri type 3 secretion requires a host-induced conformational change to the translocon pore
- Amblyomma americanum ticks utilizes countervailing pro and anti-inflammatory proteins to evade host defense