#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ammonium transceptors: Novel regulators of fungal development


Autoři: Bert van den Berg aff001;  Siobhan Lister aff001;  Julian C. Rutherford aff001
Působiště autorů: Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom aff001
Vyšlo v časopise: Ammonium transceptors: Novel regulators of fungal development. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1008059
Kategorie: Pearls
doi: https://doi.org/10.1371/journal.ppat.1008059


Zdroje

1. Paul JA, Wallen RM, Zhao C, Shi T, Perlin MH. Coordinate regulation of Ustilago maydis ammonium transporters and genes involved in mating and pathogenicity. Fungal Biol. 2018;122(7):639–50. doi: 10.1016/j.funbio.2018.03.011 29880199

2. Shnaiderman C, Miyara I, Kobiler I, Sherman A, Prusky D. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Mol Plant Microbe Interact. 2013;26(3):345–55. doi: 10.1094/MPMI-07-12-0170-R 23387470

3. Andrade SL, Einsle O. The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol. 2007;24(5–6):357–65. doi: 10.1080/09687680701388423 17710640

4. Lorenz MC, Heitman J. MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 1998;17(5):1236–47. doi: 10.1093/emboj/17.5.1236 9482721

5. Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol. 2003;50(1):259–75. doi: 10.1046/j.1365-2958.2003.03680.x 14507379

6. Biswas K, Morschhäuser J. The Mep2 ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol. 2005;56(3):649–69. doi: 10.1111/j.1365-2958.2005.04576.x 15819622

7. Rutherford JC, Lin X, Nielsen K, Heitman J. Amt2 permease is required to induce ammonium responsive invasive growth and mating in Cryptococcus neoformans. Eukaryot Cell. 2008;7(2):237–46. doi: 10.1128/EC.00079-07 18055915

8. Teichert S, Rutherford JC, Wottawa M, Heitman J, Tudzynski B. Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot Cell. 2008;7(2):187–201. doi: 10.1128/EC.00351-07 18083831

9. Javelle A, Morel M, Rodríguez-Pastrana BR, Botton B, André B, Marini AM, et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol. 2003;47(2):411–30. doi: 10.1046/j.1365-2958.2003.03303.x 12519192

10. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell. 2008;19(7):3028–39. doi: 10.1091/mbc.E08-01-0033 18434596

11. Boeckstaens M, André B, Marini AM. Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. J Biol Chem. 2008;283(31):21362–70. doi: 10.1074/jbc.M801467200 18508774

12. Van Nuland A, Vandormael P, Donaton M, Alenquer M, Lourenço A, Quintino E, et al. Ammonium permease based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Mol Microbiol. 2006;59(5):1485–505. doi: 10.1111/j.1365-2958.2005.05043.x 16468990

13. Dabas N, Schneider S, Morschhäuser J. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot Cell. 2009;8(2):147–60. doi: 10.1128/EC.00229-08 19060183

14. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, et al. Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A. 2010;107(21):9638–43. doi: 10.1073/pnas.1003587107 20457942

15. Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science. 2004;305(5690):1587–94. doi: 10.1126/science.1101952 15361618

16. Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li XD. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci U S A. 2004;101(49):17090–5. doi: 10.1073/pnas.0406475101 15563598

17. Andrade SL, Dickmanns A, Ficner R, Einsle O. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci U S A. 2005;102(42):14994–9. doi: 10.1073/pnas.0506254102 16214888

18. Javelle A, Lupo D, Zheng L, Li XD, Winkler FK, Merrick M. An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J Biol Chem. 2006;281(51):39492–8. doi: 10.1074/jbc.M608325200 17040913

19. van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, Rutherford JC. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nat Commun. 2016;7:11337. doi: 10.1038/ncomms11337 27088325

20. Thomas G, Coutts G, Merrick M. The glnKamtB operon. A conserved gene pair in prokaryotes. Trends Genet. 2000;16(1):11–4. doi: 10.1016/s0168-9525(99)01887-9 10637624

21. Boeckstaens M, Merhi A, Llinares E, Van Vooren P, Springael JY, Wintjens R, et al. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32. PLoS Genet. 2015;11(7):e1005382. doi: 10.1371/journal.pgen.1005382 26172854

22. Baday S, Orabi EA, Wang S, Lamoureux G, Bernèche S. Mechanism of NH4(+) Recruitment and NH3 Transport in Rh Proteins. Structure. 2015;23(8):1550–7. doi: 10.1016/j.str.2015.06.010 26190573

23. Wacker T, Garcia-Celma JJ, Lewe P1, Andrade SL. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins. Proc Natl Acad Sci U S A. 2014;111(27):9995–10000. doi: 10.1073/pnas.1406409111 24958855

24. Neuhäuser B, Ludewig U. Uncoupling of ionic currents from substrate transport in the plant ammonium transporter AtAMT1;2. J Biol Chem. 2014;289(17):11650–5. doi: 10.1074/jbc.C114.552802 24634212

25. Ludewig U, von Wirén N, Frommer WB. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem. 2002;277(16):13548–55. doi: 10.1074/jbc.M200739200 11821433

26. Mayer M, Dynowski M, Ludewig U. Ammonium ion transport by the AMT/Rh homologue LeAMT1;1. Biochem J. 2006;396(3):431–7. doi: 10.1042/BJ20060051 16499477

27. Mayer M, Ludewig U. Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. Plant Biol (Stuttg). 2006;8(4):522–8. 16917981

28. Søgaard R, Alsterfjord M, Macaulay N, Zeuthen T. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH. Pflugers Arch. 2009;458(4):733–43. doi: 10.1007/s00424-009-0665-z 19340454

29. Wang S, Orabi EA, Baday S, Bernèche S, Lamoureux G. Ammonium transporters achieve charge transfer by fragmenting their substrate. J Am Chem Soc. 2012;134(25):10419–27. doi: 10.1021/ja300129x 22631217

30. Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E, Fernández E, et al. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. Sci Adv. 2018;4(9):eaar3599. doi: 10.1126/sciadv.aar3599 30214933

31. Thevelein JM, Voordeckers K. Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol. 2009;26(11):2407–14. doi: 10.1093/molbev/msp168 19651853

32. Holsbeeks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM. The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci. 2004;29(10):556–64. doi: 10.1016/j.tibs.2004.08.010 15450611

33. Bowman EJ, O'Neill FJ, Bowman BJ. Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem. 1997;272(23):14776–86. doi: 10.1074/jbc.272.23.14776 9169444

34. Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio. 2011;2(3):e00055–11. doi: 10.1128/mBio.00055-11 21586647

35. Minc N, Chang F. Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr Biol. 2010;20(8):710–6. doi: 10.1016/j.cub.2010.02.047 20362451

36. Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG, Gold SE. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol. 2004;49(4):274–81. doi: 10.1007/s00284-004-4315-6 15386116

37. Rane HS, Bernardo SM, Raines SM, Binder JL, Parra KJ, Lee SA. Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. Eukaryot Cell. 2013;12(10):1369–82. doi: 10.1128/EC.00118-13 23913543

38. Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, et al. Global gene deletion analysis exploring yeast filamentous growth. Science. 2012;337(6100):1353–6. doi: 10.1126/science.1224339 22984072

39. Marini AM, Boeckstaens M, Benjelloun F, Chérif-Zahar B, André B. Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters. Curr Genet. 2006;49(6):364–74. doi: 10.1007/s00294-006-0062-5 16477434

40. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992;68(6):1077–90. doi: 10.1016/0092-8674(92)90079-r 1547504

41. Oh Y, Robertson SL, Parker J, Muddiman DC, Dean RA. Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Sci. 2017;15:20. doi: 10.1186/s12953-017-0128-y 29158724

42. López-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell. 2010;22(7):2459–75. doi: 10.1105/tpc.110.075937 20639450

43. Jiang J, Zhao J, Duan W, Tian S, Wang X, Zhuang H, et al. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC Plant Biol. 2019;19(1):239. doi: 10.1186/s12870-019-1841-8 31170918

44. Yang F, Li W, Jørgensen HJ. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PLoS ONE. 2013;8(11):e81606. doi: 10.1371/journal.pone.0081606 24303057

45. Lanver D, Müller AN, Happel P, Schweizer G, Haas FB, Franitza M, et al. The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. Plant Cell. 2018;30(2):300–23. doi: 10.1105/tpc.17.00764 29371439

46. Sriram K, Insel PA. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol Pharmacol. 2018;93(4):251–8. doi: 10.1124/mol.117.111062 29298813

Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř

Článek vyšel v časopise

PLOS Pathogens


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#