#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: A longitudinal birth cohort study of twins


Autoři: Esmée M. Bijnens aff001;  Catherine Derom aff002;  Evert Thiery aff004;  Steven Weyers aff002;  Tim S. Nawrot aff001
Působiště autorů: Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium aff001;  Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium aff002;  Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium aff003;  Department of Neurology, Ghent University Hospital, Ghent, Belgium aff004;  Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium aff005
Vyšlo v časopise: Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: A longitudinal birth cohort study of twins. PLoS Med 17(8): e32767. doi:10.1371/journal.pmed.1003213
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003213

Souhrn

Background

Exposure to green space has beneficial effects on several cognitive and behavioral aspects. However, to our knowledge, no study addressed intelligence as outcome. We investigated whether the level of urbanicity can modify the association of residential green space with intelligence and behavior in children.

Methods and findings

This study includes 620 children and is part of the East Flanders Prospective Twin Survey (EFPTS), a registry of multiple births in the province of East Flanders, Belgium. Intelligence was assessed with the Wechsler Intelligence Scale for Children-Revised (WISC-R) in 620 children (310 twin pairs) between 7 and 15 years old. From a subset of 442 children, behavior was determined based on the Achenbach Child Behavior Checklist (CBCL). Prenatal and childhood residential addresses were geocoded and used to assign green space indicators. Mixed modeling was performed to investigate green space in association with intelligence and behavior while adjusting for potential confounding factors including sex, age, parental education, neighborhood household income, year of assessment, and zygosity and chorionicity.

We found that residential green space in association with both intelligence and behavior in children was modified by the degree of urbanicity (p < 0.001). In children living in an urban environment, multivariable adjusted mixed modeling analysis revealed that an IQR increment of residential green space (3,000-m radius) was associated with a 2.6 points (95% CI 1.4–3.9; p < 0.001) higher total intelligence quotient (IQ) and 2.0 points (95% CI −3.5 to −0.4; p = 0.017) lower externalizing behavioral score. In children residing in a rural or suburban environment, no association was found. A limitation of this study is that no information was available on school location and the potential for unmeasured confounding (e.g., time spend outdoors).

Conclusions

Our results indicate that residential green space may be beneficial for the intellectual and the behavioral development of children living in urban areas. These findings are relevant for policy makers and urban planners to create an optimal environment for children to develop their full potential.

Klíčová slova:

Human intelligence – Children – Intelligence – Intelligence tests – Schools – Twins – Urban areas – Urban environments


Zdroje

1. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8. Epub 2014/02/22. doi: 10.1016/S1474-4422(13)70278-3 24556010

2. Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, Nati G, et al. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA psychiatry. 2015;72(6):531–40. Epub 2015/03/26. doi: 10.1001/jamapsychiatry.2015.57 25807066

3. Calderon-Garciduenas L, Mora-Tiscareno A, Ontiveros E, Gomez-Garza G, Barragan-Mejia G, Broadway J, et al. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 2008;68(2):117–27. Epub 2008/06/14. doi: 10.1016/j.bandc.2008.04.008 18550243

4. Ullman H, Almeida R, Klingberg T. Structural maturation and brain activity predict future working memory capacity during childhood development. J Neurosci. 2014;34(5):1592–8. Epub 2014/01/31. doi: 10.1523/JNEUROSCI.0842-13.2014 24478343

5. Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect. 2010;118(9):1326–31. Epub 2010/04/22. doi: 10.1289/ehp.0901070 20406721

6. Perera F, Li TY, Lin C, Tang D. Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. Environ Res. 2012;114:40–6. Epub 2012/03/06. doi: 10.1016/j.envres.2011.12.011 22386727

7. Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics. 2009;124(2):e195–202. Epub 2009/07/22. doi: 10.1542/peds.2008-3506 19620194

8. Vienneau D, de Hoogh K, Faeh D, Kaufmann M, Wunderli JM, Roosli M. More than clean air and tranquillity: Residential green is independently associated with decreasing mortality. Environ Int. 2017;108:176–84. Epub 2017/09/02. doi: 10.1016/j.envint.2017.08.012 28863390

9. Taylor L, Hochuli. Defining greenspace: Multiple uses across multiple disciplines. Landsc Urban Plan. 2017;158:25–38. doi: 10.1016/j.landurbplan.2016.09.024

10. Dadvand P, de NA, Figueras F, Basagana X, Su J, Amoly E, et al. Green space, health inequality and pregnancy. Environ Int. 2012;40:110–5. doi: 10.1016/j.envint.2011.07.004 21824657

11. Gidlöf-Gunnarsson A ÖE. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landsc Urban Plan. 2017;83(2–3):115–26. doi: 10.1016/j.landurbplan.2007.03.003

12. Calderon-Garciduenas L, Leray E, Heydarpour P, Torres-Jardon R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev Neurol (Paris). 2016;172(1):69–80. Epub 2016/01/01. doi: 10.1016/j.neurol.2015.10.008 26718591

13. Klatte M, Bergstrom K, Lachmann T. Does noise affect learning? A short review on noise effects on cognitive performance in children. Front Psychol. 2013;4:578. Epub 2013/09/07. doi: 10.3389/fpsyg.2013.00578 24009598

14. Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, Lopez-Vicente M, et al. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Med. 2015;12(3):e1001792. Epub 2015/03/04. doi: 10.1371/journal.pmed.1001792 25734425

15. Saenen ND, Provost EB, Viaene MK, Vanpoucke C, Lefebvre W, Vrijens K, et al. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren. Environ Int. 2016;95:112–9. Epub 2016/08/31. doi: 10.1016/j.envint.2016.07.014 27575366

16. Almanza E, Jerrett M, Dunton G, Seto E, Pentz MA. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place. 2012;18(1):46–54. Epub 2012/01/17. doi: 10.1016/j.healthplace.2011.09.003 22243906

17. Ward JS, Duncan JS, Jarden A, Stewart T. The impact of children's exposure to greenspace on physical activity, cognitive development, emotional wellbeing, and ability to appraise risk. Health Place. 2016;40:44–50. Epub 2016/05/15. doi: 10.1016/j.healthplace.2016.04.015 27179137

18. Lee AC, Jordan HC, Horsley J. Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning. Risk Manag Healthc Policy. 2015;8:131–7. Epub 2015/09/09. doi: 10.2147/RMHP.S61654 26347082

19. Maas J, van Dillen SME, Verheij RA, Groenewegen PP. Social contacts as a possible mechanism behind the relation between green space and health. Health Place. 2009;15(2):586–95. Epub 2008/11/22. doi: 10.1016/j.healthplace.2008.09.006 19022699

20. Beyer KM, Kaltenbach A, Szabo A, Bogar S, Nieto FJ, Malecki KM. Exposure to neighborhood green space and mental health: evidence from the survey of the health of Wisconsin. Int J Environ Res Public Health. 2014;11(3):3453–72. Epub 2014/03/26. doi: 10.3390/ijerph110303453 24662966

21. Ward Thompson C, Roe J, Aspinall P, Mitchell R, Clow A, Miller D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc Urban Plan. 2012;105(3):221–9. doi: 10.1016/j.landurbplan.2011.12.015

22. Bijnens E, Zeegers MP, Gielen M, Kicinski M, Hageman GJ, Pachen D, et al. Lower placental telomere length may be attributed to maternal residential traffic exposure; a twin study. Environ Int. 2015;79:1–7. Epub 2015/03/11. doi: 10.1016/j.envint.2015.02.008 25756235

23. Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, et al. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J. 2013;6(1):3. Epub 2013/05/15. doi: 10.1186/1939-4551-6-3 23663440

24. Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A. 2013;110(46):18360–7. Epub 2013/10/25. doi: 10.1073/pnas.1313731110 24154724

25. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75. Epub 2004/05/11. doi: 10.1113/jphysiol.2004.063388 15133062

26. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52. Epub 2011/02/02. doi: 10.1073/pnas.1010529108 21282636

27. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–73. Epub 2012/06/13. doi: 10.1038/mp.2012.77 22688187

28. Sandifer PA, Sutton-Grier AE, Ward BP. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst Serv. 2015;12:1–15. doi: 10.1016/j.ecoser.2014.12.007

29. Dadvand P, Nieuwenhuijsen MJ, Esnaola M, Forns J, Basagana X, Alvarez-Pedrerol M, et al. Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci U S A. 2015;112(26):7937–42. Epub 2015/06/17. doi: 10.1073/pnas.1503402112 26080420

30. Browning M, Rigolon A. School Green Space and Its Impact on Academic Performance: A Systematic Literature Review. Int J Environ Res Public Health. 2019;16(3). Epub 2019/02/06. doi: 10.3390/ijerph16030429 30717301

31. Evans GW. Child development and the physical environment. Annu Rev Psychol. 2006;57:423–51. Epub 2005/12/02. doi: 10.1146/annurev.psych.57.102904.190057 16318602

32. Bell AC, Dyment JE. Grounds for health: the intersection of green school grounds and health-promoting schools. Environ Edu Res. 2008;14(1):77–90. doi: 10.1080/13504620701843426

33. Keniger LE, Gaston KJ, Irvine KN, Fuller RA. What are the benefits of interacting with nature? Int J Environ Res Public Health. 2013;10(3):913–35. Epub 2013/03/08. doi: 10.3390/ijerph10030913 23466828

34. Wu CD, McNeely E, Cedeno-Laurent JG, Pan WC, Adamkiewicz G, Dominici F, et al. Linking student performance in Massachusetts elementary schools with the "greenness" of school surroundings using remote sensing. PLoS ONE. 2014;9(10):e108548. Epub 2014/10/14. doi: 10.1371/journal.pone.0108548 25310542

35. Van Aart CJC, Michels N, Sioen I, De Decker A, Bijnens EM, Janssen BG, et al. Residential landscape as a predictor of psychosocial stress in the life course from childhood to adolescence. Environ Int. 2018;120:456–63. Epub 2018/08/27. doi: 10.1016/j.envint.2018.08.028 30145309

36. Amoly E, Dadvand P, Forns J, Lopez-Vicente M, Basagana X, Julvez J, et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE project. Environ Health Perspect. 2014;122(12):1351–8. Epub 2014/09/10. doi: 10.1289/ehp.1408215 25204008

37. Markevych I, Tiesler CM, Fuertes E, Romanos M, Dadvand P, Nieuwenhuijsen MJ, et al. Access to urban green spaces and behavioural problems in children: Results from the GINIplus and LISAplus studies. Environ Int. 2014;71:29–35. Epub 2014/06/24. doi: 10.1016/j.envint.2014.06.002 24953038

38. Younan D, Tuvblad C, Li L, Wu J, Lurmann F, Franklin M, et al. Environmental Determinants of Aggression in Adolescents: Role of Urban Neighborhood Greenspace. J Am Acad Child Adolesc Psychiatry. 2016;55(7):591–601. Epub 2016/06/28. doi: 10.1016/j.jaac.2016.05.002 27343886

39. Browning HEM, Locke DH. The greenspace-academic performance link varies by remote sensing measure and urbanicity around Maryland public schools. Landsc Urban Plan. 2020;195. doi: 10.1016/j.landurbplan.2019.103706

40. Lee M, Kim S, Ha M. Community greenness and neurobehavioral health in children and adolescents. Sci Total Environ. 2019;672:381–8. Epub 2019/04/09. doi: 10.1016/j.scitotenv.2019.03.454 30959304

41. Derom C, Thiery E, Peeters H, Vlietinck R, Defoort P, Frijns JP. The East Flanders Prospective Twin Survey (EFPTS): an actual perception. Twin Res Hum Genet. 2013;16(1):58–63. Epub 2012/10/30. doi: 10.1017/thg.2012.75 23101489

42. Derom C, Thiery E, Rutten BPF, Peeters H, Gielen M, Bijnens E, et al. The East Flanders Prospective Twin Survey (EFPTS): 55 Years Later. Twin Res Hum Genet. 2019:1–6. Epub 2019/09/10. doi: 10.1017/thg.2019.64 31496455

43. Van Hecke L, Van Cauwenberg J, Clarys P, Van Dyck D, Veitch J, Deforche B. Active Use of Parks in Flanders (Belgium): An Exploratory Observational Study. Int J Environ Res Public Health. 2016;14(1). Epub 2017/01/04. doi: 10.3390/ijerph14010035 28042849

44. Van Dyck D, Sallis JF, Cardon G, Deforche B, Adams MA, Geremia C, et al. Associations of neighborhood characteristics with active park use: an observational study in two cities in the USA and Belgium. Int J Health Geogr. 2013;12:26. Epub 2013/05/08. doi: 10.1186/1476-072X-12-26 23648048

45. Derom R, Derom C, Vlietinck R. Placentation. In: Keith L, Papiernik E, Keith D, Luke B, editors. Multiple pregnancy: Epidemiology, Gestation & Perinatal outcome. New York: The Parthenon Publishing Group; 1995. p. 113–28.

46. Vlietinck R. Determination of the zygosity of twins [thesis]. Leuven: KU Leuven; 1986.

47. Loos RJ, Ridgway CL, Ong K. Theoretical underpinning of the use of twin studies in life course epidemiology. Family matters: Designing, analysing and understanding family based studies in life course epidemiology. Oxford: Oxford University Press; 2009. p. 57–84.

48. Janssen S, Dumont G, Fierens F, Mensink C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ. 2008;42(20):4884–903. doi: 10.1016/j.atmosenv.2008.02.043

49. Jacobs L, Emmerechts J, Mathieu C, Hoylaerts MF, Fierens F, Hoet PH, et al. Air pollution related prothrombotic changes in persons with diabetes. Environ Health Perspect. 2010;118(2):191–6. doi: 10.1289/ehp.0900942 20123602

50. Jacobs N, Rijsdijk F, Derom C, Danckaerts M, Thiery E, Derom R, et al. Child psychopathology and lower cognitive ability: a general population twin study of the causes of association. Mol Psychiatry. 2002;7(4):368–74. Epub 2002/05/03. doi: 10.1038/sj.mp.4000971 11986980

51. Bijnens EM, Derom C, Weyers S, Janssen BG, Thiery E, Nawrot TS. Placental mitochondrial DNA content is associated with childhood intelligence. J Transl Med. 2019;17(1):361. Epub 2019/11/11. doi: 10.1186/s12967-019-2105-y 31703745

52. Wechsler D. Wechsler Intelligence Scale for Children-R (Dutch version): Swets and Zeitlinger B. V., Lisse, the Netherlands; 1986.

53. Achenbach T. Integrative guide for the 1991 CBCL/4–18,YSR, and TRF profiles. Burlington (VT): Department of Psychiatry, University of Vermont; 1991.

54. Verhulst FC, van der Ende J, Koot H. Dutch Manual for the CBCL/4-18. Rotterdam: Afdeling Kinder- en Jeugdpsychiatrie, Sophia Kinderziekenhuis Academisch Ziekenhuis Rotterdam, Erasmus Universiteit Rotterdam; 1996.

55. Achenbach T, Rescorla L. Manual for the ASEBA School-Age Forms & Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families; 2001.

56. Dadvand P, Pujol J, Macia D, Martinez-Vilavella G, Blanco-Hinojo L, Mortamais M, et al. The Association between Lifelong Greenspace Exposure and 3-Dimensional Brain Magnetic Resonance Imaging in Barcelona Schoolchildren. Environ Health Perspect. 2018;126(2):027012. Epub 2018/03/06. doi: 10.1289/EHP1876 29504939

57. Dadvand P, Tischer C, Estarlich M, Llop S, Dalmau-Bueno A, Lopez-Vicente M, et al. Lifelong Residential Exposure to Green Space and Attention: A Population-based Prospective Study. Environ Health Perspect. 2017;125(9):097016. Epub 2017/09/22. doi: 10.1289/EHP694 28934095

58. Browning M, Kuo F, Sachdeva S, Lee K, Westphal L. Greenness and school-wide test scores are not always positively associated–A replication of “linking student performance in Massachusetts elementary schools with the ‘greenness’ of school surroundings using remote sensing”. Landsc Urban Plan. 2018;178:69–72. doi: 10.1016/j.landurbplan.2018.05.007

59. Kweon B-S, Ellis CD, Lee J, Jacobs K. The link between school environments and student academic performance. Urban For Urban Green. 2017;23:35–43. doi: 10.1016/j.ufug.2017.02.002

60. Needleman HL, Leviton A, Bellinger D. Lead-associated intellectual deficit. N Engl J Med. 1982;306(6):367. Epub 1982/02/11. doi: 10.1056/nejm198202113060619 7054715

61. Liao J, Zhang B, Xia W, Cao Z, Zhang Y, Liang S, et al. Residential exposure to green space and early childhood neurodevelopment. Environ Int. 2019;128:70–6. Epub 2019/04/29. doi: 10.1016/j.envint.2019.03.070 31029981

62. Vanaken GJ, Danckaerts M. Impact of Green Space Exposure on Children's and Adolescents' Mental Health: A Systematic Review. Int J Environ Res Public Health. 2018;15(12):2668. Epub 2018/11/30. doi: 10.3390/ijerph15122668 30486416

63. Zach A, Meyer N, Hendrowarsito L, Kolb S, Bolte G, Nennstiel-Ratzel U, et al. Association of sociodemographic and environmental factors with the mental health status among preschool children-Results from a cross-sectional study in Bavaria, Germany. Int J Hyg Environ Health. 2016;219(4–5):458–67. Epub 2016/05/18. doi: 10.1016/j.ijheh.2016.04.012 27179940

64. Balseviciene B, Sinkariova L, Grazuleviciene R, Andrusaityte S, Uzdanaviciute I, Dedele A, et al. Impact of residential greenness on preschool children's emotional and behavioral problems. Int J Environ Res Public Health. 2014;11(7):6757–70. Epub 2014/07/01. doi: 10.3390/ijerph110706757 24978880

65. Richardson EA, Pearce J, Shortt NK, Mitchell R. The role of public and private natural space in children's social, emotional and behavioural development in Scotland: A longitudinal study. Environ Res. 2017;158:729–36. Epub 2017/07/28. doi: 10.1016/j.envres.2017.07.038 28750342

66. Feng X, Astell-Burt T. Residential Green Space Quantity and Quality and Child Well-being: A Longitudinal Study. Am J Prev Med. 2017;53(5):616–24. Epub 2017/09/03. doi: 10.1016/j.amepre.2017.06.035 28864128

67. Mitchell R, Popham F. Greenspace, urbanity and health: relationships in England. J Epidemiol Community Health. 2007;61(8):681–3. Epub 2007/07/17. doi: 10.1136/jech.2006.053553 17630365

68. Markevych I, Schoierer J, Hartig T, Chudnovsky A, Hystad P, Dzhambov AM, et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ Res. 2017;158:301–17. Epub 2017/07/04. doi: 10.1016/j.envres.2017.06.028 28672128

69. Voracek M, Haubner T. Twin-singleton differences in intelligence: a meta-analysis. Psychol Rep. 2008;102(3):951–62. Epub 2008/09/04. doi: 10.2466/pr0.102.3.951-962 18763469

70. Eriksen W, Sundet JM, Tambs K. Twin-singleton differences in intelligence: a register-based birth cohort study of Norwegian males. Twin Res Hum Genet. 2012;15(5):649–55. Epub 2012/08/11. doi: 10.1017/thg.2012.40 22877999

71. Posthuma D, de Geus EJ, Bleichrodt N, Boomsma DI. Twin-singleton differences in intelligence? Twin Res. 2000;3(2):83–7. doi: 10.1375/136905200320565535 10918620

72. van Os J, Wichers M, Danckaerts M, Van Gestel S, Derom C, Vlietinck R. A prospective twin study of birth weight discordance and child problem behavior. Biological psychiatry. 2001;50(8):593–9. Epub 2001/11/03. doi: 10.1016/s0006-3223(01)01085-x 11690594

73. Robbers SC, Bartels M, van Oort FV, van Beijsterveldt CE, van der Ende J, Verhulst FC, et al. A twin-singleton comparison of developmental trajectories of externalizing and internalizing problems in 6- to 12-year-old children. Twin Res Hum Genet. 2010;13(1):79–87. Epub 2010/02/18. doi: 10.1375/twin.13.1.79 20158310

74. Nawrot TS, Perez L, Kunzli N, Munters E, Nemery B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet. 2011;377(9767):732–40. doi: 10.1016/S0140-6736(10)62296-9 21353301

75. Dijkema MB, Mallant SF, Gehring U, van den Hurk K, Alssema M, van Strien RT, et al. Long-term exposure to traffic-related air pollution and type 2 diabetes prevalence in a cross-sectional screening-study in the Netherlands. Environ Health. 2011;10:76. Epub 2011/09/06. doi: 10.1186/1476-069X-10-76 21888674

76. Baccarelli A, Martinelli I, Pegoraro V, Melly S, Grillo P, Zanobetti A, et al. Living near major traffic roads and risk of deep vein thrombosis. Circulation. 2009;119(24):3118–24. Epub 2009/06/10. doi: 10.1161/CIRCULATIONAHA.108.836163 19506111

77. Saenen ND, Bove H, Steuwe C, Roeffaers MBJ, Provost EB, Lefebvre W, et al. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure? Am J Respir Crit Care Med. 2017;196(7):873–81. Epub 2017/07/08. doi: 10.1164/rccm.201704-0797OC 28686472

78. Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). New York: World Urbanization Prospects; 2018.

79. de Keijzer C, Gascon M, Nieuwenhuijsen MJ, Dadvand P. Long-Term Green Space Exposure and Cognition Across the Life Course: a Systematic Review. Curr Envrion Health Rep. 2016;3(4):468–77. Epub 2016/10/13. doi: 10.1007/s40572-016-0116-x 27730509


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 8
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#