#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs


Autoři: Jing Chen aff001;  Jonas Bacelis aff002;  Pol Sole-Navais aff002;  Amit Srivastava aff004;  Julius Juodakis aff002;  Amy Rouse aff005;  Mikko Hallman aff006;  Kari Teramo aff007;  Mads Melbye aff008;  Bjarke Feenstra aff008;  Rachel M. Freathy aff011;  George Davey Smith aff012;  Deborah A. Lawlor aff012;  Jeffrey C. Murray aff015;  Scott M. Williams aff016;  Bo Jacobsson aff002;  Louis J. Muglia aff004;  Ge Zhang aff004
Působiště autorů: Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America aff001;  Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden aff002;  Region Västra Götaland, Sahlgrenska University Hospital, Department of Obstetrics and Gynecology, Gothenburg, Sweden aff003;  Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America aff004;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  Center for Prevention of Preterm Birth, Perinatal Institute and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnat aff005;  PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland aff006;  Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland aff007;  Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark aff008;  Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark aff009;  Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America aff010;  Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom aff011;  MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom aff012;  Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom aff013;  Bristol NIHR Biomedical Research Centre, United Kingdom aff014;  Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America aff015;  Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America aff016;  Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway aff017
Vyšlo v časopise: Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs. PLoS Med 17(8): e32767. doi:10.1371/journal.pmed.1003305
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003305

Souhrn

Background

Many maternal traits are associated with a neonate’s gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects behind these observed associations are unresolved.

Methods and findings

Based on 10,734 mother–infant duos of European ancestry from the UK, Northern Europe, Australia, and North America, we constructed haplotype genetic scores using single-nucleotide polymorphisms (SNPs) known to be associated with adult height, body mass index (BMI), blood pressure (BP), fasting plasma glucose (FPG), and type 2 diabetes (T2D). Using these scores as genetic instruments, we estimated the maternal and fetal genetic effects underlying the observed associations between maternal phenotypes and pregnancy outcomes. We also used infant-specific birth weight genetic scores as instrument and examined the effects of fetal growth on pregnancy outcomes, maternal BP, and glucose levels during pregnancy. The maternal nontransmitted haplotype score for height was significantly associated with gestational duration (p = 2.2 × 10−4). Both maternal and paternal transmitted height haplotype scores were highly significantly associated with birth weight and length (p < 1 × 10−17). The maternal transmitted BMI scores were associated with birth weight with a significant maternal effect (p = 1.6 × 10−4). Both maternal and paternal transmitted BP scores were negatively associated with birth weight with a significant fetal effect (p = 9.4 × 10−3), whereas BP alleles were significantly associated with gestational duration and preterm birth through maternal effects (p = 3.3 × 10−2 and p = 4.5 × 10−3, respectively). The nontransmitted haplotype score for FPG was strongly associated with birth weight (p = 4.7 × 10−6); however, the glucose-increasing alleles in the fetus were associated with reduced birth weight through a fetal effect (p = 2.2 × 10−3). The haplotype scores for T2D were associated with birth weight in a similar way but with a weaker maternal effect (p = 6.4 × 10−3) and a stronger fetal effect (p = 1.3 × 10−5). The paternal transmitted birth weight score was significantly associated with reduced gestational duration (p = 1.8 × 10−4) and increased maternal systolic BP during pregnancy (p = 2.2 × 10−2). The major limitations of the study include missing and heterogenous phenotype data in some data sets and different instrumental strength of genetic scores for different phenotypic traits.

Conclusions

We found that both maternal height and fetal growth are important factors in shaping the duration of gestation: genetically elevated maternal height is associated with longer gestational duration, whereas alleles that increase fetal growth are associated with shorter gestational duration. Fetal growth is influenced by both maternal and fetal effects and can reciprocally influence maternal phenotypes: taller maternal stature, higher maternal BMI, and higher maternal blood glucose are associated with larger birth size through maternal effects; in the fetus, the height- and metabolic-risk–increasing alleles are associated with increased and decreased birth size, respectively; alleles raising birth weight in the fetus are associated with shorter gestational duration and higher maternal BP. These maternal and fetal genetic effects may explain the observed associations between the studied maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes.

Klíčová slova:

Birth – Birth weight – Genetics – Haplotypes – Phenotypes – Pregnancy – Preterm birth – Type 2 diabetes


Zdroje

1. Han Z, Lutsiv O, Mulla S, McDonald SD. Maternal height and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. J Obstet Gynaecol Can. 2012;34(8):721–46. doi: 10.1016/S1701-2163(16)35337-3 22947405.

2. Myklestad K, Vatten LJ, Magnussen EB, Salvesen KA, Romundstad PR. Do parental heights influence pregnancy length?: A population-based prospective study, HUNT 2. BMC Pregnancy Childbirth. 2013;13:33. doi: 10.1186/1471-2393-13-33 23383756; PubMed Central PMCID: PMC3608172.

3. Dougherty CR, Jones AD. The determinants of birth weight. Am J Obstet Gynecol. 1982;144(2):190–200. doi: 10.1016/0002-9378(82)90627-5 7114129.

4. Addo OY, Stein AD, Fall CH, Gigante DP, Guntupalli AM, Horta BL, et al. Maternal height and child growth patterns. J Pediatr. 2013;163(2):549–54. doi: 10.1016/j.jpeds.2013.02.002 23477997; PubMed Central PMCID: PMC3711792.

5. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002. doi: 10.1056/NEJMoa0707943 18463375.

6. Steer PJ, Little MP, Kold-Jensen T, Chapple J, Elliott P. Maternal blood pressure in pregnancy, birth weight, and perinatal mortality in first births: prospective study. BMJ. 2004;329(7478):1312. doi: 10.1136/bmj.38258.566262.7C 15561733; PubMed Central PMCID: PMC534837.

7. Himmelmann A, Svensson A, Hansson L. Relation of maternal blood pressure during pregnancy to birth weight and blood pressure in children. The Hypertension in Pregnancy Offspring Study. J Intern Med. 1994;235(4):347–52. doi: 10.1111/j.1365-2796.1994.tb01085.x 8151267.

8. Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord. 1999;23 Suppl 8:S1–107. 10641588.

9. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300(24):2886–97. doi: 10.1001/jama.2008.886 19109117.

10. Falkner B. Birth weight as a predictor of future hypertension. Am J Hypertens. 2002;15(2 Pt 2):43S–5S. doi: 10.1016/s0895-7061(01)02297-x 11866228.

11. Huxley R, Owen CG, Whincup PH, Cook DG, Rich-Edwards J, Smith GD, et al. Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr. 2007;85(5):1244–50. doi: 10.1093/ajcn/85.5.1244 17490959.

12. Miura K, Nakagawa H, Tabata M, Morikawa Y, Nishijo M, Kagamimori S. Birth weight, childhood growth, and cardiovascular disease risk factors in Japanese aged 20 years. Am J Epidemiol. 2001;153(8):783–9. doi: 10.1093/aje/153.8.783 11296151.

13. Lawlor D, Richmond R, Warrington N, McMahon G, Davey Smith G, Bowden J, et al. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them. Wellcome Open Res. 2017;2:11. doi: 10.12688/wellcomeopenres.10567.1 28405635; PubMed Central PMCID: PMC5386135.

14. Lawlor DA. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition—an old hypothesis with new importance? Int J Epidemiol. 2013;42(1):7–29. doi: 10.1093/ije/dys209 23508404

15. Zhang G, Bacelis J, Lengyel C, Teramo K, Hallman M, Helgeland O, et al. Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis. PLoS Med. 2015;12(8):e1001865. doi: 10.1371/journal.pmed.1001865 26284790; PubMed Central PMCID: PMC4540580.

16. Smith GD. Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? Basic Clin Pharmacol Toxicol. 2008;102(2):245–56. doi: 10.1111/j.1742-7843.2007.00191.x 18226080.

17. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. doi: 10.1111/j.1365-2796.2007.01809.x 17444880.

18. Martin-Gronert MS, Ozanne SE. Mechanisms underlying the developmental origins of disease. Rev Endocr Metab Disord. 2012;13(2):85–92. doi: 10.1007/s11154-012-9210-z 22430227.

19. Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353(9166):1789–92. doi: 10.1016/S0140-6736(98)07546-1 10348008.

20. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52. doi: 10.1038/nature19806 27680694.

21. Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci. 2009;364(1520):1107–15. doi: 10.1098/rstb.2008.0238 19324615; PubMed Central PMCID: PMC2666680.

22. Liu N, Archer E, Srinivasasainagendra V, Allison DB. A statistical framework for testing the causal effects of fetal drive. Front Genet. 2014;5:464. doi: 10.3389/fgene.2014.00464 25628644; PubMed Central PMCID: PMC4292723.

23. Power C, Kuh D, Morton S. From developmental origins of adult disease to life course research on adult disease and aging: insights from birth cohort studies. Annu Rev Public Health. 2013;34:7–28. doi: 10.1146/annurev-publhealth-031912-114423 23514315.

24. Tyrrell J, Richmond RC, Palmer TM, Feenstra B, Rangarajan J, Metrustry S, et al. Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. JAMA. 2016;315(11):1129–40. doi: 10.1001/jama.2016.1975 26978208; PubMed Central PMCID: PMC4811305.

25. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33(1):30–42. doi: 10.1093/ije/dyh132 15075143.

26. Richmond RC, Timpson NJ, Felix JF, Palmer T, Gaillard R, McMahon G, et al. Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study. PLoS Med. 2017;14(1): e1002221. doi: 10.1371/journal.pmed.1002221 28118352; PubMed Central PMCID: PMC5261553.

27. Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland O, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;51(5):804–14. doi: 10.1038/s41588-019-0403-1 31043758; PubMed Central PMCID: PMC6522365.

28. Bacelis J, Juodakis J, Adams Waldorf KM, Sengpiel V, Muglia LJ, Zhang G, et al. Uterine distention as a factor in birth timing: retrospective nationwide cohort study in Sweden. BMJ Open. 2018;8(10):e022929. doi: 10.1136/bmjopen-2018-022929 30385442.

29. Kramer MS. The epidemiology of adverse pregnancy outcomes: an overview. J Nutr. 2003;133(5 Suppl 2):1592S–6S. doi: 10.1093/jn/133.5.1592S. 12730473.

30. Zhang G, Srivastava A, Bacelis J, Juodakis J, Jacobsson B, Muglia LJ. Genetic studies of gestational duration and preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:33–47. doi: 10.1016/j.bpobgyn.2018.05.003 30007778; PubMed Central PMCID: PMC6290110.

31. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296. doi: 10.1371/journal.pmed.0040296 17941714; PubMed Central PMCID: PMC2020495.

32. Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, et al. Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. N Engl J Med. 2017;377(12):1156–67. doi: 10.1056/NEJMoa1612665 28877031; PubMed Central PMCID: PMC5561422.

33. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110. Epub 2012 Apr 16. doi: 10.1093/ije/dys066 22507742; PubMed Central PMCID: PMC3600619.

34. Zhang H, Baldwin DA, Bukowski RK, Parry S, Xu Y, Song C, et al. A genome-wide association study of early spontaneous preterm delivery. Genet Epidemiol. 2015;39(3):217–26. doi: 10.1002/gepi.21887 25599974; PubMed Central PMCID: PMC4366311.

35. Macdonald-Wallis C, Tilling K, Fraser A, Nelson SM, Lawlor DA. Established preeclampsia risk factors are related to patterns of blood pressure change in normal term pregnancy: findings from the Avon Longitudinal Study of Parents and Children. J Hypertens. 2011;29(9):1703–11. doi: 10.1097/HJH.0b013e328349eec6 21841545.

36. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7. doi: 10.1038/ng.3656 27571263; PubMed Central PMCID: PMC5157836.

37. 1000 Genomes Project Consortium, Abecasis GR, Auton A Brooks LD, Durbin RM Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393 26432245.

38. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2012;9(2):179–81. doi: 10.1038/nmeth.1785 22138821.

39. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. doi: 10.1093/hmg/ddy271 30124842.

40. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–25. doi: 10.1038/s41588-018-0205-x 30224653; PubMed Central PMCID: PMC6284793.

41. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44(6):659–69. doi: 10.1038/ng.2274 22581228; PubMed Central PMCID: PMC3613127.

42. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13. doi: 10.1038/s41588-018-0241-6 30297969; PubMed Central PMCID: PMC6287706.

43. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63. doi: 10.1002/sim.3034 17886233.

44. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet. 2011;89(5):607–18. doi: 10.1016/j.ajhg.2011.10.004 22077970; PubMed Central PMCID: PMC3213397.

45. Evans DM, Brion MJ, Paternoster L, Kemp JP, McMahon G, Munafo M, et al. Mining the human phenome using allelic scores that index biological intermediates. PLoS Genet. 2013;9(10): e1003919. doi: 10.1371/journal.pgen.1003919 24204319; PubMed Central PMCID: PMC3814299.

46. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG, Consortium E-I. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52. doi: 10.1007/s10654-015-0011-z 25773750; PubMed Central PMCID: PMC4516908.

47. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45(3):908–15. doi: 10.1093/ije/dyw127 27427429; PubMed Central PMCID: PMC5005949.

48. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8. doi: 10.1038/s41588-018-0099-7 29686387; PubMed Central PMCID: PMC6083837.

49. Tyler AL, Asselbergs FW, Williams SM, Moore JH. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays. 2009;31(2):220–7. doi: 10.1002/bies.200800022 19204994; PubMed Central PMCID: PMC3159922.

50. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. J Stat Softw. 2010;36(3):48. doi: 10.18637/jss.v036.i03

51. Robinson MR, Kleinman A, Graff M, Vinkhuyzen AAE, Couper D, Miller MB, et al. Genetic evidence of assortative mating in humans. Nature Human Behaviour. 2017;1:0016. doi: 10.1038/s41562-016-0016

52. Li X, Redline S, Zhang X, Williams S, Zhu X. Height associated variants demonstrate assortative mating in human populations. Sci Rep. 2017;7(1):15689. doi: 10.1038/s41598-017-15864-x 29146993; PubMed Central PMCID: PMC5691191.

53. Knop MR, Geng TT, Gorny AW, Ding R, Li C, Ley SH, et al. Birth Weight and Risk of Type 2 Diabetes Mellitus, Cardiovascular Disease, and Hypertension in Adults: A Meta-Analysis of 7 646 267 Participants From 135 Studies. J Am Heart Assoc. 2018;7(23): e008870. doi: 10.1161/JAHA.118.008870 30486715.

54. Tyrrell JS, Yaghootkar H, Freathy RM, Hattersley AT, Frayling TM. Parental diabetes and birthweight in 236 030 individuals in the UK biobank study. Int J Epidemiol. 2013;42(6):1714–23. doi: 10.1093/ije/dyt220 24336895; PubMed Central PMCID: PMC3887570.

55. Washburn SL. Tools and human evolution. Sci Am. 1960;203:63–75. 13843002.

56. Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. Metabolic hypothesis for human altriciality. Proc Natl Acad Sci U S A. 2012;109(38):15212–6. doi: 10.1073/pnas.1205282109 22932870; PubMed Central PMCID: PMC3458333.

57. Agrawal A, Scherrer JF, Grant JD, Sartor CE, Pergadia ML, Duncan AE, et al. The effects of maternal smoking during pregnancy on offspring outcomes. Prev Med. 2010;50(1–2):13–8. Epub 2009 Dec 21. doi: 10.1016/j.ypmed.2009.12.009 20026103; PubMed Central PMCID: PMC2813884.

58. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. doi: 10.1093/ije/dyg070 12689998.

59. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14(7):483–95. doi: 10.1038/nrg3461 23752797; PubMed Central PMCID: PMC4104202.


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 8
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#