The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis
Autoři:
Robert J. Commons aff001; Julie A. Simpson aff003; Kamala Thriemer aff001; Tesfay Abreha aff004; Ishag Adam aff005; Nicholas M. Anstey aff001; Ashenafi Assefa aff006; Ghulam R. Awab aff007; J. Kevin Baird aff009; Bridget E. Barber aff001; Cindy S. Chu aff010; Prabin Dahal aff010; André Daher aff014; Timothy M. E. Davis aff017; Arjen M. Dondorp aff007; Matthew J. Grigg aff001; Georgina S. Humphreys aff013; Jimee Hwang aff018; Harin Karunajeewa aff020; Moses Laman aff017; Kartini Lidia aff023; Brioni R. Moore aff017; Ivo Mueller aff020; Francois Nosten aff010; Ayodhia P. Pasaribu aff007; Dhelio B. Pereira aff028; Aung P. Phyo aff012; Jeanne R. Poespoprodjo aff030; Carol H. Sibley aff013; Kasia Stepniewska aff010; Inge Sutanto aff034; Guy Thwaites aff010; Tran T. Hien aff010; Nicholas J. White aff007; Timothy William aff011; Charles J. Woodrow aff007; Philippe J. Guerin aff010; Ric N. Price aff001
Působiště autorů:
Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
aff001; WorldWide Antimalarial Resistance Network (WWARN), Clinical module, Darwin, Northern Territory, Australia
aff002; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
aff003; ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
aff004; Faculty of Medicine, University of Khartoum, Khartoum, Sudan
aff005; Malaria and Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
aff006; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
aff007; Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
aff008; Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
aff009; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
aff010; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
aff011; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
aff012; WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
aff013; Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
aff014; Vice‑presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
aff015; Liverpool School of Tropical Medicine, Liverpool, United Kingdom
aff016; Medical School, The University of Western Australia, Fremantle Hospital Unit, Fremantle, Western Australia, Australia
aff017; U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
aff018; Global Health Group, University of California San Francisco, San Francisco, California, United States of America
aff019; Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
aff020; Western Centre for Health Research and Education, Western Health, Melbourne, Victoria, Australia
aff021; Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
aff022; The Department of Pharmacology and Therapy, Faculty of Medicine, Nusa Cendana University, Kupang, Indonesia
aff023; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
aff024; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
aff025; Parasites and Insect Vectors Department, Institut Pasteur, Paris, France
aff026; Medical Faculty, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
aff027; Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, Rondônia, Brazil
aff028; Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
aff029; Mimika District Hospital, Timika, Indonesia
aff030; Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia
aff031; Paediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
aff032; Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
aff033; Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
aff034; Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
aff035; Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
aff036
Vyšlo v časopise:
The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Med 16(10): e32767. doi:10.1371/journal.pmed.1002928
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1002928
Souhrn
Background
Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax.
Methods and findings
Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7–49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1–12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40–24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48–0.84), p = 0.0013 and 0.83 (0.73–0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99–1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01–0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10–0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01–0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups.
Conclusions
In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.
Klíčová slova:
Antimalarials – Dose prediction methods – Malaria – Plasmodium – Primaquine – Systematic reviews – Chloroquine
Zdroje
1. Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(10):982–91. doi: 10.1016/S1473-3099(14)70855-2 25213732; PubMed Central PMCID: PMC4178238.
2. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297. doi: 10.1186/1475-2875-10-297 21989376; PubMed Central PMCID: PMC3228849.
3. Tarning J, Thana P, Phyo AP, Lwin KM, Hanpithakpong W, Ashley EA, et al. Population Pharmacokinetics and Antimalarial Pharmacodynamics of Piperaquine in Patients With Plasmodium vivax Malaria in Thailand. CPT Pharmacometrics Syst Pharmacol. 2014;3:e132. Epub 2014/08/28. doi: 10.1038/psp.2014.29 25163024; PubMed Central PMCID: PMC4150927.
4. Watson J, Chu CS, Tarning J, White NJ. Characterizing Blood-Stage Antimalarial Drug MIC Values In Vivo Using Reinfection Patterns. Antimicrob Agents Chemother. 2018;62(7). Epub 2018/04/18. doi: 10.1128/AAC.02476-17 29661873; PubMed Central PMCID: PMC6021672.
5. Sumawinata IW, Bernadeta, Leksana B, Sutamihardja A, Purnomo, Subianto B, et al. Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua. Am J Trop Med Hyg. 2003;68(4):416–20. Epub 2003/07/24. 12875290.
6. Karunajeewa HA, Mueller I, Senn M, Lin E, Law I, Gomorrai PS, et al. A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med. 2008;359(24):2545–57. doi: 10.1056/NEJMoa0804915 19064624.
7. Ratcliff A, Siswantoro H, Kenangalem E, Wuwung M, Brockman A, Edstein MD, et al. Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans R Soc Trop Med Hyg. 2007;101(4):351–9. Epub 2006/10/10. doi: 10.1016/j.trstmh.2006.06.008 17028048; PubMed Central PMCID: PMC2080856.
8. Douglas NM, John GK, von Seidlein L, Anstey NM, Price RN. Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria. Adv Parasitol. 2012;80:271–300. doi: 10.1016/B978-0-12-397900-1.00005-0 23199490.
9. Commons RJ, Simpson JA, Thriemer K, Humphreys GS, Abreha T, Alemu SG, et al. The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infect Dis. 2018. Epub 2018/07/24. doi: 10.1016/S1473-3099(18)30348-7 30033231.
10. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN. Artemisinin combination therapy for vivax malaria. Lancet Infect Dis. 2010;10(6):405–16. doi: 10.1016/S1473-3099(10)70079-7 20510281; PubMed Central PMCID: PMC3350863.
11. World Health Organization. World Malaria Report 2017. Geneva: World Health Organization; 2017.
12. Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N, et al. Geographical variation in Plasmodium vivax relapse. Malar J. 2014;13:144. doi: 10.1186/1475-2875-13-144 24731298; PubMed Central PMCID: PMC4021508.
13. Douglas NM, Lampah DA, Kenangalem E, Simpson JA, Poespoprodjo JR, Sugiarto P, et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 2013;10(12):e1001575. doi: 10.1371/journal.pmed.1001575 24358031; PubMed Central PMCID: PMC3866090.
14. Bassat Q. The use of artemether-lumefantrine for the treatment of uncomplicated Plasmodium vivax malaria. PLoS Negl Trop Dis. 2011;5(12):e1325. doi: 10.1371/journal.pntd.0001325 22216359; PubMed Central PMCID: PMC3246442.
15. Douglas NM, Nosten F, Ashley EA, Phaiphun L, van Vugt M, Singhasivanon P, et al. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis. 2011;52(5):612–20. doi: 10.1093/cid/ciq249 21292666; PubMed Central PMCID: PMC3060895.
16. Commons RJ, Thriemer K, Humphreys G, Suay I, Sibley CH, Guerin PJ, et al. The Vivax Surveyor: Online mapping database for Plasmodium vivax clinical trials. Int J Parasitol Drugs Drug Resist. 2017;7(2):181–90. doi: 10.1016/j.ijpddr.2017.03.003 28384505; PubMed Central PMCID: PMC5382033.
17. WorldWide Antimalarial Resistance Network. Data Management and Statistical Analysis Plan v1.2. Oxford: WorldWide Antimalarial Resistance Network; 2012 [cited 2017 Nov 29]. Available from: www.wwarn.org/sites/default/files/ClinicalDMSAP.pdf.
18. John GK, Douglas NM, von Seidlein L, Nosten F, Baird JK, White NJ, et al. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J. 2012;11:280. doi: 10.1186/1475-2875-11-280 22900786; PubMed Central PMCID: PMC3489597.
19. World Health Organisation. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015.
20. Hoglund RM, Workman L, Edstein MD, Thanh NX, Quang NN, Zongo I, et al. Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis. PLoS Med. 2017;14(1):e1002212. doi: 10.1371/journal.pmed.1002212 28072872.
21. WorldWide Antimalarial Resistance Network DPSG. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med. 2013;10(12):e1001564. doi: 10.1371/journal.pmed.1001564 24311989; PubMed Central PMCID: PMC3848996.
22. WorldWide Antimalarial Resistance Network. Statistical Analysis Plan: WWARN Vivax Recurrence Study Group v0.2. Oxford: WorldWide Antimalarial Resistance Network; 2016 [cited 2017 Nov 29]. Available from: www.wwarn.org/tools-resources/statistical-analysis-plan.
23. Tierney JF, Vale C, Riley R, Smith CT, Stewart L, Clarke M, et al. Individual Participant Data (IPD) Meta-analyses of Randomised Controlled Trials: Guidance on Their Use. PLoS Med. 2015;12(7):e1001855. doi: 10.1371/journal.pmed.1001855 26196287; PubMed Central PMCID: PMC4510878.
24. Worldwide Antimalarial Resistance Network ALDISG. The effect of dose on the antimalarial efficacy of artemether-lumefantrine: a systematic review and pooled analysis of individual patient data. Lancet Infect Dis. 2015;15(6):692–702. doi: 10.1016/S1473-3099(15)70024-1 25788162.
25. Hasugian AR, Purba HL, Kenangalem E, Wuwung RM, Ebsworth EP, Maristela R, et al. Dihydroartemisinin-piperaquine versus artesunate-amodiaquine: superior efficacy and posttreatment prophylaxis against multidrug-resistant Plasmodium falciparum and Plasmodium vivax malaria. Clin Infect Dis. 2007;44(8):1067–74. Epub 2007/03/17. doi: 10.1086/512677 17366451; PubMed Central PMCID: PMC2532501.
26. Ratcliff A, Siswantoro H, Kenangalem E, Maristela R, Wuwung RM, Laihad F, et al. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet. 2007;369(9563):757–65. doi: 10.1016/S0140-6736(07)60160-3 17336652; PubMed Central PMCID: PMC2532500.
27. Phyo AP, Lwin KM, Price RN, Ashley EA, Russell B, Sriprawat K, et al. Dihydroartemisinin-piperaquine versus chloroquine in the treatment of Plasmodium vivax malaria in Thailand: a randomized controlled trial. Clin Infect Dis. 2011;53(10):977–84. Epub 2011/10/18. doi: 10.1093/cid/cir631 22002979; PubMed Central PMCID: PMC3193831.
28. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis. 2013;56(3):383–97. doi: 10.1093/cid/cis902 23087389.
29. Pasaribu AP, Chokejindachai W, Sirivichayakul C, Tanomsing N, Chavez I, Tjitra E, et al. A randomized comparison of dihydroartemisinin-piperaquine and artesunate-amodiaquine combined with primaquine for radical treatment of vivax malaria in Sumatera, Indonesia. J Infect Dis. 2013;208(11):1906–13. Epub 2013/08/09. doi: 10.1093/infdis/jit407 23926329; PubMed Central PMCID: PMC3814843.
30. Sutanto I, Tjahjono B, Basri H, Taylor WR, Putri FA, Meilia RA, et al. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother. 2013;57(3):1128–35. Epub 2012/12/21. doi: 10.1128/AAC.01879-12 23254437; PubMed Central PMCID: PMC3591862.
31. Laman M, Moore BR, Benjamin JM, Yadi G, Bona C, Warrel J, et al. Artemisinin-naphthoquine versus artemether-lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. PLoS Med. 2014;11(12):e1001773. doi: 10.1371/journal.pmed.1001773 25549086; PubMed Central PMCID: PMC4280121.
32. Lidia K, Dwiprahasto I, Kristin E. Therapeutic effects of dihydroartemisinin piperaquine versus chloroquine for uncomplicated vivax malaria in Kupang, East Nusa Tenggara, Indonesia. Int J Pharm Sci Rev Res. 2015;31(2):247–51.
33. Nelwan EJ, Ekawati LL, Tjahjono B, Setiabudy R, Sutanto I, Chand K, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC Med. 2015;13:294. Epub 2015/12/15. doi: 10.1186/s12916-015-0535-9 26654101; PubMed Central PMCID: PMC4676167.
34. Thuan PD, Ca NT, Van Toi P, Nhien NT, Thanh NV, Anh ND, et al. A Randomized Comparison of Chloroquine Versus Dihydroartemisinin-Piperaquine for the Treatment of Plasmodium vivax Infection in Vietnam. Am J Trop Med Hyg. 2016;94(4):879–85. Epub 2016/02/10. doi: 10.4269/ajtmh.15-0740 26856909; PubMed Central PMCID: PMC4824232.
35. Chu CS, Phyo AP, Turner C, Win HH, Poe NP, Yotyingaphiram W, et al. Chloroquine Versus Dihydroartemisinin-Piperaquine With Standard High-dose Primaquine Given Either for 7 Days or 14 Days in Plasmodium vivax Malaria. Clin Infect Dis. 2018. Epub 2018/08/24. doi: 10.1093/cid/ciy735 30952158
36. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al. Age-Related Clinical Spectrum of Plasmodium knowlesi Malaria and Predictors of Severity. Clin Infect Dis. 2018;67(3):350–9. Epub 2018/06/07. doi: 10.1093/cid/ciy065 29873683; PubMed Central PMCID: PMC6051457.
37. Poespoprodjo JR, Kenangalem E, Wafom J, Chandrawati F, Puspitasari AM, Ley B, et al. Therapeutic Response to Dihydroartemisinin-Piperaquine for P. falciparum and P. vivax Nine Years after Its Introduction in Southern Papua, Indonesia. Am J Trop Med Hyg. 2018;98(3):677–82. Epub 2018/01/19. doi: 10.4269/ajtmh.17-0662 29345221; PubMed Central PMCID: PMC5850981.
38. Awab GR, Pukrittayakamee S, Imwong M, Dondorp AM, Woodrow CJ, Lee SJ, et al. Dihydroartemisinin-piperaquine versus chloroquine to treat vivax malaria in Afghanistan: an open randomized, non-inferiority, trial. Malar J. 2010;9:105. Epub 2010/04/23. doi: 10.1186/1475-2875-9-105 20409302; PubMed Central PMCID: PMC2864284.
39. Abdallah TM, Ali AA, Bakri M, Gasim GI, Musa IR, Adam I. Efficacy of artemether-lumefantrine as a treatment for uncomplicated Plasmodium vivax malaria in eastern Sudan. Malar J. 2012;11:404. Epub 2012/12/12. doi: 10.1186/1475-2875-11-404 23217037; PubMed Central PMCID: PMC3519545.
40. Hwang J, Alemayehu BH, Reithinger R, Tekleyohannes SG, Takele T, Birhanu SG, et al. In vivo efficacy of artemether-lumefantrine and chloroquine against Plasmodium vivax: a randomized open label trial in central Ethiopia. PLoS ONE. 2013;8(5):e63433. doi: 10.1371/journal.pone.0063433 23717423; PubMed Central PMCID: PMC3661577.
41. Abreha T, Hwang J, Thriemer K, Tadesse Y, Girma S, Melaku Z, et al. Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial. PLoS Med. 2017;14(5):e1002299. doi: 10.1371/journal.pmed.1002299 28510573; PubMed Central PMCID: PMC5433686.
42. Daher A, Pereira D, Lacerda MVG, Alexandre MAA, Nascimento CT, Alves de Lima ESJC, et al. Efficacy and safety of artemisinin-based combination therapy and chloroquine with concomitant primaquine to treat Plasmodium vivax malaria in Brazil: an open label randomized clinical trial. Malar J. 2018;17(1):45. Epub 2018/01/25. doi: 10.1186/s12936-018-2192-x 29361939; PubMed Central PMCID: PMC5782374.
43. Ley B, Alam MS, Thriemer K, Hossain MS, Kibria MG, Auburn S, et al. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study. PLoS ONE. 2016;11(4):e0154015. doi: 10.1371/journal.pone.0154015 27128675; PubMed Central PMCID: PMC4851315.
44. Chu CS, Phyo AP, Lwin KM, Win HH, San T, Aung AA, et al. Comparison of the Cumulative Efficacy and Safety of Chloroquine, Artesunate, and Chloroquine-Primaquine in Plasmodium vivax Malaria. Clin Infect Dis. 2018. Epub 2018/06/12. doi: 10.1093/cid/ciy319 29889239.
45. Chaorattanakawee S, Lon C, Chann S, Thay KH, Kong N, You Y, et al. Measuring ex vivo drug susceptibility in Plasmodium vivax isolates from Cambodia. Malar J. 2017;16(1):392. Epub 2017/10/02. doi: 10.1186/s12936-017-2034-2 28964258; PubMed Central PMCID: PMC5622433.
46. Marfurt J, Chalfein F, Prayoga P, Wabiser F, Wirjanata G, Sebayang B, et al. Comparative ex vivo activity of novel endoperoxides in multidrug-resistant Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother. 2012;56(10):5258–63. Epub 2012/08/02. doi: 10.1128/AAC.00283-12 22850522; PubMed Central PMCID: PMC3457353.
47. Aguiar AC, Pereira DB, Amaral NS, De Marco L, Krettli AU. Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to anti-malarials and gene characterization in Rondonia, West Amazon, Brazil. Malar J. 2014;13:73. Epub 2014/03/04. doi: 10.1186/1475-2875-13-73 24581308; PubMed Central PMCID: PMC3945814.
48. Russell B, Chalfein F, Prasetyorini B, Kenangalem E, Piera K, Suwanarusk R, et al. Determinants of in vitro drug susceptibility testing of Plasmodium vivax. Antimicrob Agents Chemother. 2008;52(3):1040–5. Epub 2008/01/09. doi: 10.1128/AAC.01334-07 18180357; PubMed Central PMCID: PMC2258486.
49. Ezzet F, van Vugt M, Nosten F, Looareesuwan S, White NJ. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob Agents Chemother. 2000;44(3):697–704. Epub 2000/02/19. doi: 10.1128/aac.44.3.697-704.2000 10681341; PubMed Central PMCID: PMC89749.
50. Tarning J, Lindegardh N, Annerberg A, Singtoroj T, Day NP, Ashton M, et al. Pitfalls in estimating piperaquine elimination. Antimicrob Agents Chemother. 2005;49(12):5127–8. Epub 2005/11/24. doi: 10.1128/AAC.49.12.5127-5128.2005 16304183; PubMed Central PMCID: PMC1315981.
51. Hung TY, Davis TM, Ilett KF, Karunajeewa H, Hewitt S, Denis MB, et al. Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria. Br J Clin Pharmacol. 2004;57(3):253–62. Epub 2004/03/05. doi: 10.1046/j.1365-2125.2003.02004.x 14998421; PubMed Central PMCID: PMC1884452.
52. White NJ, van Vugt M, Ezzet F. Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet. 1999;37(2):105–25. Epub 1999/09/25. doi: 10.2165/00003088-199937020-00002 10496300.
53. Novartis. Coartem: full prescribing information. Basel, Switzerland: Novartis; 2015 [cited 2018 Oct 17]. Available from: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/coartem.pdf.
54. Alving AS, Arnold J, Hockwald RS, Clayman CB, Dern RJ, Beutler E, et al. Potentiation of the curative action of primaquine in vivax malaria by quinine and chloroquine. J Lab Clin Med. 1955;46(2):301–6. 13242948.
55. Goncalves BP, Pett H, Tiono AB, Murry D, Sirima SB, Niemi M, et al. Age, Weight, and CYP2D6 Genotype Are Major Determinants of Primaquine Pharmacokinetics in African Children. Antimicrob Agents Chemother. 2017;61(5). Epub 2017/03/16. doi: 10.1128/AAC.02590-16 28289025; PubMed Central PMCID: PMC5404566.
Štítky
Interní lékařstvíČlánek vyšel v časopise
PLOS Medicine
2019 Číslo 10
- Jak postupovat při výběru betablokátoru − doporučení z kardiologické praxe
- Příznivý vliv Armolipidu Plus na hladinu cholesterolu a zánětlivé parametry u pacientů s chronickým subklinickým zánětem
- Berberin: přírodní hypolipidemikum se slibnými výsledky
- Flexofytol® – přírodní revoluce v boji proti osteoartróze kloubů
- Léčba bolesti u seniorů
Nejčtenější v tomto čísle
- Characterization of Parkinson’s disease using blood-based biomarkers: A multicohort proteomic analysis
- Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: A population-based cohort study in China
- Association of preterm birth with lipid disorders in early adulthood: A Swedish cohort study
- mHealth intervention “ImTeCHO” to improve delivery of maternal, neonatal, and child care services—A cluster-randomized trial in tribal areas of Gujarat, India