#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor


Autoři: Lucia Simonicova aff001;  W. Scott Moye-Rowley aff001
Působiště autorů: Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America aff001
Vyšlo v časopise: Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1009005
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009005

Souhrn

Azole drugs are the most frequently used antifungal agents. The pathogenic yeast Candida glabrata acquires resistance to azole drugs via single amino acid substitution mutations eliciting a gain-of-function (GOF) hyperactive phenotype in the Pdr1 transcription factor. These GOF mutants constitutively drive high transcription of target genes such as the ATP-binding cassette transporter-encoding CDR1 locus. Previous characterization of Pdr1 has demonstrated that this factor is negatively controlled by the action of a central regulatory domain (CRD) of ~700 amino acids, in which GOF mutations are often found. Our earlier experiments demonstrated that a Pdr1 derivative in which the CRD was deleted gave rise to a transcriptional regulator that could not be maintained as the sole copy of PDR1 in the cell owing to its toxically high activity. Using a set of GOF PDR1 alleles from azole-resistant clinical isolates, we have analyzed the mechanisms acting to repress Pdr1 transcriptional activity. Our data support the view that Pdr1-dependent transactivation is mediated by a complex network of transcriptional coactivators interacting with the extreme C-terminal part of Pdr1. These coactivators include but are not limited to the Mediator component Med15A. Activity of this C-terminal domain is controlled by the CRD and requires multiple regions across the C-terminus for normal function. We also provide genetic evidence for an element within the transactivation domain that mediates the interaction of Pdr1 with coactivators on one hand while restricting Pdr1 activity on the other hand. These data indicate that GOF mutations in PDR1 block nonidentical negative inputs that would otherwise restrain Pdr1 transcriptional activation. The strong C-terminal transactivation domain of Pdr1 uses multiple different protein regions to recruit coactivators.

Klíčová slova:

DNA transcription – Gene expression – Methionine – Mutation – Plasmid construction – Substitution mutation – Transcription factors – Transactivation


Zdroje

1. Krysan DJ. The unmet clinical need of novel antifungal drugs. Virulence. 2017;8(2):135–7. doi: 10.1080/21505594.2016.1276692 28095189

2. Nett JE, Andes DR. Antifungal Agents: Spectrum of Activity, Pharmacology, and Clinical Indications. Infect Dis Clin North Am. 2016;30(1):51–83. doi: 10.1016/j.idc.2015.10.012 26739608

3. Sagatova AA, Keniya MV, Wilson RK, Monk BC, Tyndall JD. Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14alpha-Demethylase. Antimicrob Agents Chemother. 2015;59(8):4982–9. doi: 10.1128/AAC.00925-15 26055382

4. Vallabhaneni S, Sapiano M, Weiner LM, Lockhart SR, Magill S. Antifungal Susceptibility Testing Practices at Acute Care Hospitals Enrolled in the National Healthcare Safety Network, United States, 2011–2015. Open Forum Infect Dis. 2017;4(4):ofx175. doi: 10.1093/ofid/ofx175 29026868

5. Patel TS, Carver PL, Eschenauer GA. Are In Vitro Susceptibilities to Azole Antifungals Predictive of Clinical Outcome in the Treatment of Candidemia? J Clin Microbiol. 2018;56(12).

6. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect Dis. 2019;6(Suppl 1):S79–S94. doi: 10.1093/ofid/ofy358 30895218

7. Whaley SG, Rogers PD. Azole Resistance in Candida glabrata. Current infectious disease reports. 2016;18(12):41. doi: 10.1007/s11908-016-0554-5 27761779

8. Healey KR, Perlin DS. Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. J Fungi (Basel). 2018;4(3).

9. Paul S, Schmidt JA, Moye-Rowley WS. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell. 2011;10(2):187–97. doi: 10.1128/EC.00277-10 21131438

10. Khakhina S, Simonicova L, Moye-Rowley WS. Positive autoregulation and repression of transactivation are key regulatory features of the Candida glabrata Pdr1 transcription factor. Mol Microbiol. 2018;107(6):747–64. doi: 10.1111/mmi.13913 29363861

11. Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009;5(1):e1000268. doi: 10.1371/journal.ppat.1000268 19148266

12. Moye-Rowley WS. Multiple interfaces control activity of the Candida glabrata Pdr1 transcription factor mediating azole drug resistance. Curr Genet. 2019;65(1):103–8. doi: 10.1007/s00294-018-0870-4 30056490

13. Thakur JK, Arthanari H, Yang F, Pan S-J, Fan X, Breger J, et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature. 2008;452:604–9. doi: 10.1038/nature06836 18385733

14. Whaley SG, Caudle KE, Simonicova L, Zhang Q, Moye-Rowley WS, Rogers PD. Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in Candida glabrata. mSphere. 2018;3(1).

15. Paul S, McDonald WH, Moye-Rowley WS. Negative regulation of Candida glabrata Pdr1 by the deubiquitinase subunit Bre5 occurs in a ubiquitin independent manner. Mol Microbiol. 2018;110(2):309–23. doi: 10.1111/mmi.14109 30137659

16. Vermitsky JP, Edlind TD. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother. 2004;48(10):3773–81. doi: 10.1128/AAC.48.10.3773-3781.2004 15388433

17. Tsai HF, Krol AA, Sarti KE, Bennett JE. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother. 2006;50(4):1384–92. doi: 10.1128/AAC.50.4.1384-1392.2006 16569856

18. Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol. 2006;61(3):704–22. doi: 10.1111/j.1365-2958.2006.05235.x 16803598

19. Zordan RE, Ren Y, Pan SJ, Rotondo G, De Las Penas A, Iluore J, et al. Expression plasmids for use in Candida glabrata. G3. 2013;3(10):1675–86. doi: 10.1534/g3.113.006908 23934995

20. Paul S, Bair TB, Moye-Rowley WS. Identification of Genomic Binding Sites for Candida glabrata Pdr1 Transcription Factor in Wild-Type and rho0 Cells. Antimicrob Agents Chemother. 2014;58(11):6904–12. doi: 10.1128/AAC.03921-14 25199772

21. Moran GP, Anderson MZ, Myers LC, Sullivan DJ. Role of Mediator in virulence and antifungal drug resistance in pathogenic fungi. Curr Genet. 2019;65(3):621–30. doi: 10.1007/s00294-019-00932-8 30637479

22. Verger A, Monte D, Villeret V. Twenty years of Mediator complex structural studies. Biochem Soc Trans. 2019;47(1):399–410. doi: 10.1042/BST20180608 30733343

23. Piskacek M, Havelka M, Rezacova M, Knight A. The 9aaTAD Transactivation Domains: From Gal4 to p53. PLoS One. 2016;11(9):e0162842. doi: 10.1371/journal.pone.0162842 27618436

24. Ravarani CN, Erkina TY, De Baets G, Dudman DC, Erkine AM, Babu MM. High-throughput discovery of functional disordered regions: investigation of transactivation domains. Mol Syst Biol. 2018;14(5):e8190. doi: 10.15252/msb.20188190 29759983

25. Warfield L, Tuttle LM, Pacheco D, Klevit RE, Hahn S. A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci U S A. 2014;111(34):E3506–13. doi: 10.1073/pnas.1412088111 25122681

26. Nishikawa JL, Boeszoermenyi A, Vale-Silva LA, Torelli R, Posteraro B, Sohn YJ, et al. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction. Nature. 2016;530(7591):485–9. doi: 10.1038/nature16963 26886795

27. Longtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14:953–61. doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 9717241

28. Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. doi: 10.1016/s0076-6879(02)50957-5 12073338

29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609

30. Shahi P, Gulshan K, Naar AM, Moye-Rowley WS. Differential roles of transcriptional mediator subunits in regulation of multidrug resistance gene expression in Saccharomyces cerevisiae. Mol Biol Cell. 2010;21(14):2469–82. doi: 10.1091/mbc.e09-10-0899 20505076

31. Vu BG, Thomas GH, Moye-Rowley WS. Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata. MBio. 2019;10(3).

32. Chung D, Barker BM, Carey CC, Merriman B, Werner ER, Lechner BE, et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 2014;10(11):e1004487. doi: 10.1371/journal.ppat.1004487 25375670


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 8
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#