Metabolic and pathologic profiles of human LSS deficiency recapitulated in mice
Autoři:
Yoichi Wada aff001; Atsuo Kikuchi aff001; Akimune Kaga aff002; Naoki Shimizu aff003; Junya Ito aff003; Ryo Onuma aff003; Fumiyoshi Fujishima aff004; Eriko Totsune aff001; Ryo Sato aff001; Tetsuya Niihori aff005; Matsuyuki Shirota aff006; Ryo Funayama aff007; Kota Sato aff008; Toru Nakazawa aff008; Keiko Nakayama aff007; Yoko Aoki aff005; Setsuya Aiba aff013; Kiyotaka Nakagawa aff003; Shigeo Kure aff001
Působiště autorů:
Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff001; Department of Pediatrics, Tohoku Kosai Hospital, Sendai, Miyagi, Japan
aff002; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
aff003; Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff004; Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff005; Division of Interdisciplinary Medical Sciences, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff006; Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff007; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff008; Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff009; Departments of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff010; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff010; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff011; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff012; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
aff013
Vyšlo v časopise:
Metabolic and pathologic profiles of human LSS deficiency recapitulated in mice. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008628
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008628
Souhrn
Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.
Klíčová slova:
Cataracts – Congenital anomalies – Enzyme metabolism – Enzymes – Epidermis – Hair – Cholesterol – Mouse models
Zdroje
1. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nature reviews Molecular cell biology. Nature Publishing Group; 2008;9: 125–138. doi: 10.1038/nrm2336 18216769
2. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science (New York, NY). 1996;274: 255–259.
3. Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell. 2001;105: 599–612. doi: 10.1016/s0092-8674(01)00369-5 11389830
4. Brown AJ. 24(S),25-epoxycholesterol: a messenger for cholesterol homeostasis. Int J Biochem Cell Biol. 2009;41: 744–747. doi: 10.1016/j.biocel.2008.05.029 18725318
5. Zhao L, Chen X-J, Zhu J, Xi Y-B, Yang X, Hu L-D, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015 ed. 2015;523: 607–611. doi: 10.1038/nature14650 26200341
6. Chen X, Liu L. Congenital cataract with LSS gene mutations: a new case report. J Pediatr Endocrinol Metab. 2017;0. doi: 10.1515/jpem-2017-0101 29016354
7. Romano M-T, Tafazzoli A, Mattern M, Sivalingam S, Wolf S, Rupp A, et al. Bi-allelic Mutations in LSS, Encoding Lanosterol Synthase, Cause Autosomal-Recessive Hypotrichosis Simplex. Am J Hum Genet. 2018;103: 777–785. doi: 10.1016/j.ajhg.2018.09.011 30401459
8. Besnard T, Sloboda N, Goldenberg A, Kury S, Cogne B, Breheret F, et al. Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome. Genetics in medicine: official journal of the American College of Medical Genetics. Nature Publishing Group; 2019;24: 1. doi: 10.1038/s41436-019-0445-x 30723320
9. Mori M, Li G, Abe I, Nakayama J, Guo Z, Sawashita J, et al. Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. The Journal of clinical investigation. 2006;116: 395–404. doi: 10.1172/JCI20797 16440058
10. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537: 508–514. doi: 10.1038/nature19356 27626380
11. Wolf LV, Yang Y, Wang J, Xie Q, Braunger B, Tamm ER, et al. Identification of pax6-dependent gene regulatory networks in the mouse lens. Butler G, editor. PloS one. Public Library of Science; 2009;4: e4159. doi: 10.1371/journal.pone.0004159 19132093
12. Choi JJY, Ting C-T, Trogrlic L, Milevski SV, Familari M, Martinez G, et al. A role for smoothened during murine lens and cornea development. Andley UP, editor. PloS one. Public Library of Science; 2014;9: e108037. doi: 10.1371/journal.pone.0108037 25268479
13. Shultz LD, Lyons BL, Burzenski LM, Gott B, Samuels R, Schweitzer PA, et al. Mutations at the mouse ichthyosis locus are within the lamin B receptor gene: a single gene model for human Pelger-Huet anomaly. Hum Mol Genet. 2003;12: 61–69. doi: 10.1093/hmg/ddg003 12490533
14. He M, Kratz LE, Michel JJ, Vallejo AN, Ferris L, Kelley RI, et al. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. The Journal of clinical investigation. 2011 ed. 2011;121: 976–984. doi: 10.1172/JCI42650 21285510
15. Paller AS, van Steensel MA, Rodriguez-Martin M, Sorrell J, Heath C, Crumrine D, et al. Pathogenesis-based therapy reverses cutaneous abnormalities in an inherited disorder of distal cholesterol metabolism. J Invest Dermatol. 2011;131: 2242–2248. doi: 10.1038/jid.2011.189 21753784
16. Canueto J, Giros M, Ciria S, Pi-Castan G, Artigas M, Garcia-Dorado J, et al. Clinical, molecular and biochemical characterization of nine Spanish families with Conradi-Hunermann-Happle syndrome: new insights into X-linked dominant chondrodysplasia punctata with a comprehensive review of the literature. Br J Dermatol. Wiley/Blackwell (10.1111); 2012;166: 830–838. doi: 10.1111/j.1365-2133.2011.10756.x 22121851
17. Herman GE, Kratz L. Disorders of sterol synthesis: beyond Smith-Lemli-Opitz syndrome. American journal of medical genetics Part C, Seminars in medical genetics. 2012;160C: 301–321. doi: 10.1002/ajmg.c.31340 23042573
18. He M, Smith LD, Chang R, Li X, Vockley J. The role of sterol-C4-methyl oxidase in epidermal biology. Biochimica et biophysica acta. 2014;1841: 331–335. doi: 10.1016/j.bbalip.2013.10.009 24144731
19. Rossi M, D'Armiento M, Parisi I, Ferrari P, Hall CM, Cervasio M, et al. Clinical phenotype of lathosterolosis. American journal of medical genetics Part A. Wiley-Blackwell; 2007;143A: 2371–2381. doi: 10.1002/ajmg.a.31929 17853487
20. Porter FD. Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. Nature Publishing Group; 2008;16: 535–541. doi: 10.1038/ejhg.2008.10 18285838
21. Woollett LA. Where does fetal and embryonic cholesterol originate and what does it do? Annu Rev Nutr. 2008;28: 97–114. doi: 10.1146/annurev.nutr.26.061505.111311 18662139
22. Evers BM, Farooqi MS, Shelton JM, Richardson JA, Goldstein JL, Brown MS, et al. Hair growth defects in Insig-deficient mice caused by cholesterol precursor accumulation and reversed by simvastatin. J Invest Dermatol. 2010;130: 1237–1248. doi: 10.1038/jid.2009.442 20090767
23. Mirza R, Hayasaka S, Takagishi Y, Kambe F, Ohmori S, Maki K, et al. DHCR24 gene knockout mice demonstrate lethal dermopathy with differentiation and maturation defects in the epidermis. J Invest Dermatol. 2006;126: 638–647. doi: 10.1038/sj.jid.5700111 16410790
24. Roessler E, Mittaz L, Du Y, Scott HS, Chang J, Rossier C, et al. Structure of the human Lanosterol synthase gene and its analysis as a candidate for holoprosencephaly (HPE1). Human genetics. 1999 ed. 1999;105: 489–495. 10598817
25. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52: 6–34. doi: 10.1194/jlr.R009548 20929975
26. Furtado LV, Kelley RI, Opitz JM. Disorders of sterol biosynthesis. Metabolic Diseases: Foundations of Clinical Management, Genetics, and Pathology. 2017. pp. 329–366.
27. Blassberg R, Macrae JI, Briscoe J, Jacob J. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome. Hum Mol Genet. 2016;25: 693–705. doi: 10.1093/hmg/ddv507 26685159
28. Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? Journal of lipid research. 2008;49: 271–281. doi: 10.1194/jlr.R700015-JLR200 17975220
29. Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E. WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation. Cell. 2016 ed. 2016;164: 156–169. doi: 10.1016/j.cell.2015.11.058 26771489
30. Bajawi SM, Jafarri SA, Buraik MA, Attas Al KM, Hannani HY. Pathogenesis-based therapy: Cutaneous abnormalities of CHILD syndrome successfully treated with topical simvastatin monotherapy. JAAD Case Rep. 2018;4: 232–234. doi: 10.1016/j.jdcr.2017.11.019 29687057
31. Hino-Fukuyo N, Kikuchi A, Arai-Ichinoi N, Niihori T, Sato R, Suzuki T, et al. Genomic analysis identifies candidate pathogenic variants in 9 of 18 patients with unexplained West syndrome. Human genetics. Springer Berlin Heidelberg; 2015;134: 649–658. doi: 10.1007/s00439-015-1553-6 25877686
32. Nakagawa K, Ibusuki D, Suzuki Y, Yamashita S, Higuchi O, Oikawa S, et al. Ion-trap tandem mass spectrometric analysis of squalene monohydroperoxide isomers in sunlight-exposed human skin. Journal of lipid research. 2007;48: 2779–2787. doi: 10.1194/jlr.D700016-JLR200 17848584
33. Lichti U, Anders J, Yuspa SH. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protocols. Nature Publishing Group; 2008;3: 799–810. doi: 10.1038/nprot.2008.50 18451788
34. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry. 1957;226: 497–509. 13428781
35. Ito J, Nakagawa K, Kato S, Miyazawa T, Kimura F, Miyazawa T. The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring. Life sciences. 2016;151: 70–75. doi: 10.1016/j.lfs.2016.02.089 26924496
36. Kanki H, Suzuki H, Itohara S. High-efficiency CAG-FLPe deleter mice in C57BL/6J background. Experimental animals / Japanese Association for Laboratory Animal Science. 2006;55: 137–141.
37. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. Rockefeller University Press; 2002;156: 1099–1111. doi: 10.1083/jcb.200110122 11889141
38. Dhamdhere GR, Fang MY, Jiang J, Lee K, Cheng D, Olveda RC, et al. Drugging a stem cell compartment using Wnt3a protein as a therapeutic. PLoS ONE. 2014;9: e83650. doi: 10.1371/journal.pone.0083650 24400074
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 2
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Masturbační chování žen v ČR − dotazníková studie
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
Nejčtenější v tomto čísle
- Planarian EGF repeat-containing genes megf6 and hemicentin are required to restrict the stem cell compartment
- Evolutionary dynamics of microRNA target sites across vertebrate evolution
- Rab11 activation by Ik2 kinase is required for dendrite pruning in Drosophila sensory neurons
- Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes