Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization
Autoři:
Leslie Dunipace aff001; Zsuzsa Ákos aff001; Angelike Stathopoulos aff001
Působiště autorů:
California Institute of Technology, Pasadena, CA
aff001
Vyšlo v časopise:
Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008525
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008525
Souhrn
Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5’ and brk3’, that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5’ deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnioserosa tissue cell number suggesting a loss of canalization. In contrast, brk3’ deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions.
Klíčová slova:
BMP signaling – Drosophila melanogaster – Embryos – Gene expression – Gene regulation – Gene regulatory networks – Genetic loci – Phenotypes
Zdroje
1. Hong J-W, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science. 2008;321: 1314. doi: 10.1126/science.1160631 18772429
2. Wunderlich Z, Bragdon MDJ, Vincent BJ, White JA, Estrada J, DePace AH. Krüppel Expression Levels Are Maintained through Compensatory Evolution of Shadow Enhancers. Cell Rep. 2016;14: 3030. doi: 10.1016/j.celrep.2016.03.032 27028762
3. Perry MW, Boettiger AN, Bothma JP, Levine M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr Biol. 2010;20: 1562–1567. doi: 10.1016/j.cub.2010.07.043 20797865
4. Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature. 2010;466: 490–493. doi: 10.1038/nature09158 20512118
5. Osterwalder M, Barozzi I, Tissières V, Fukuda-Yuzawa Y, Mannion BJ, Afzal SY, et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature. 2018;554: 239–243. doi: 10.1038/nature25461 29420474
6. Cannavò E, Khoueiry P, Garfield DA, Geeleher P, Zichner T, Gustafson EH, et al. Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr Biol. 2016;26: 38–51. doi: 10.1016/j.cub.2015.11.034 26687625
7. Bothma JP, Garcia HG, Ng S, Perry MW, Gregor T, Levine M. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. Elife. 2015;4. doi: 10.7554/eLife.07956 26267217
8. Dunipace L, Ozdemir A, Stathopoulos A. Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression. Development. 2011;138: 4075–4084. doi: 10.1242/dev.069146 21813571
9. Perry MW, Boettiger AN, Levine M. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc Natl Acad Sci U S A. 2011;108: 13570–13575. doi: 10.1073/pnas.1109873108 21825127
10. Dunipace L, Saunders A, Ashe HL, Stathopoulos A. Autoregulatory feedback controls sequential action of cis-regulatory modules at the brinker locus. Dev Cell. 2013;26: 536–543. doi: 10.1016/j.devcel.2013.08.010 24044892
11. Jaźwińska A, Kirov N, Wieschaus E, Roth S, Rushlow C. The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell. 1999;96: 563–573. doi: 10.1016/s0092-8674(00)80660-1 10052458
12. Ozdemir A, Fisher-Aylor KI, Pepke S, Samanta M, Dunipace L, McCue K, et al. High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation. Genome Res. 2011;21: 566–577. doi: 10.1101/gr.104018.109 21383317
13. Markstein M, Markstein P, Markstein V, Levine MS. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc Natl Acad Sci U S A. 2002;99: 763–768. doi: 10.1073/pnas.012591199 11752406
14. Zhang H, Levine M, Ashe HL. Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev. 2001;15: 261–266. doi: 10.1101/gad.861201 11159907
15. Rushlow C, Colosimo PF, Lin MC, Xu M, Kirov N. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 2001;15: 340–351. doi: 10.1101/gad.861401 11159914
16. Gratz SJ, Harrison MM, Wildonger J, O’Connor-Giles KM. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Methods in Molecular Biology. 2015. pp. 335–348. doi: 10.1007/978-1-4939-2687-9_22 25981484
17. Jaźwińska A, Rushlow C, Roth S. The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. Development. 1999;126: 3323–3334. 10393112
18. Saller E, Kelley A, Bienz M. The transcriptional repressor Brinker antagonizes Wingless signaling. Genes Dev. 2002;16: 1828–1838. doi: 10.1101/gad.230002 12130542
19. Lacy ME, Hutson MS. Amnioserosa development and function in Drosophila embryogenesis: Critical mechanical roles for an extraembryonic tissue. Dev Dyn. 2016;245: 558–568. doi: 10.1002/dvdy.24395 26878336
20. Liang H-L, Xu M, Chuang Y-C, Rushlow C. Response to the BMP gradient requires highly combinatorial inputs from multiple patterning systems in the Drosophila embryo. Development. 2012;139: 1956–1964. doi: 10.1242/dev.079772 22513375
21. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26: 317–325. doi: 10.1038/nbt1385 18278033
22. Sandler JE, Stathopoulos A. Quantitative Single-Embryo Profile of Drosophila Genome Activation and the Dorsal-Ventral Patterning Network. Genetics. 2016;202: 1575–1584. doi: 10.1534/genetics.116.186783 26896327
23. Araujo H, Bier E. sog and dpp exert opposing maternal functions to modify toll signaling and pattern the dorsoventral axis of the Drosophila embryo. Development. 2000;127: 3631–3644. 10903186
24. Meyer H, Von Ohlen T, Panz M, Paululat A. The disintegrin and metalloprotease Meltrin from Drosophila forms oligomers via its protein binding domain and is regulated by the homeobox protein VND during embryonic development. Insect Biochem Mol Biol. 2010;40: 814–823. doi: 10.1016/j.ibmb.2010.07.010 20705134
25. Cinnamon E, Gur-Wahnon D, Helman A, St Johnston D, Jiménez G, Paroush Z ‘ev. Capicua integrates input from two maternal systems in Drosophila terminal patterning. The EMBO Journal. 2004. pp. 4571–4582. doi: 10.1038/sj.emboj.7600457 15510215
26. Gergen JP, Butler BA. Isolation of the Drosophila segmentation gene runt and analysis of its expression during embryogenesis. Genes & Development. 1988. pp. 1179–1193. doi: 10.1101/gad.2.9.1179 2847961
27. Moran E, Jimenez G. The Tailless Nuclear Receptor Acts as a Dedicated Repressor in the Early Drosophila Embryo. Molecular and Cellular Biology. 2006. pp. 3446–3454. doi: 10.1128/MCB.26.9.3446-3454.2006 16611987
28. Deignan L, Pinheiro MT, Sutcliffe C, Saunders A, Wilcockson SG, Zeef LAH, et al. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo. PLoS Genet. 2016;12: e1006164. doi: 10.1371/journal.pgen.1006164 27379389
29. Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EEM. A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes & Development. 2007. pp. 436–449. doi: 10.1101/gad.1509007 17322403
30. Yan X, Xiong X, Chen Y-G. Feedback regulation of TGF-β signaling. Acta Biochimica et Biophysica Sinica. 2018. pp. 37–50. doi: 10.1093/abbs/gmx129 29228156
31. Araujo H, Fontenele MR, da Fonseca RN. Position matters: Variability in the spatial pattern of BMP modulators generates functional diversity. genesis. 2011. pp. 698–718. doi: 10.1002/dvg.20778 21671348
32. Shimmi O, O’Connor MB. Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo. Development. 2003;130: 4673–4682. doi: 10.1242/dev.00684 12925593
33. Wang X, Harris RE, Bayston LJ, Ashe HL. Type IV collagens regulate BMP signalling in Drosophila. Nature. 2008. pp. 72–77. doi: 10.1038/nature07214 18701888
34. Sawala A, Sutcliffe C, Ashe HL. Multistep molecular mechanism for bone morphogenetic protein extracellular transport in the Drosophila embryo. Proc Natl Acad Sci U S A. 2012;109: 11222–11227. doi: 10.1073/pnas.1202781109 22733779
35. Marqués G, Musacchio M, Shimell MJ, Wünnenberg-Stapleton K, Cho KW, O’Connor MB. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell. 1997;91: 417–426. doi: 10.1016/s0092-8674(00)80425-0 9363950
36. Raftery LA, Sutherland DJ. Gradients and thresholds: BMP response gradients unveiled in Drosophila embryos. Trends in Genetics. 2003. pp. 701–708. doi: 10.1016/j.tig.2003.10.009 14642751
37. Chang T, Shy D, Hartenstein V. Antagonistic relationship between Dpp and EGFR signaling in Drosophila head patterning. Dev Biol. 2003;263: 103–113. doi: 10.1016/s0012-1606(03)00448-2 14568549
38. Liberman LM, Stathopoulos A. Design flexibility in cis-regulatory control of gene expression: synthetic and comparative evidence. Dev Biol. 2009;327: 578–589. doi: 10.1016/j.ydbio.2008.12.020 19135437
39. Foo SM, Sun Y, Lim B, Ziukaite R, O’Brien K, Nien C-Y, et al. Zelda potentiates morphogen activity by increasing chromatin accessibility. Curr Biol. 2014;24: 1341–1346. doi: 10.1016/j.cub.2014.04.032 24909324
40. Reeves GT, Trisnadi N, Truong TV, Nahmad M, Katz S, Stathopoulos A. Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev Cell. 2012;22: 544–557. doi: 10.1016/j.devcel.2011.12.007 22342544
41. Mizutani CM, Nie Q, Wan FYM, Zhang Y-T, Vilmos P, Sousa-Neves R, et al. Formation of the BMP activity gradient in the Drosophila embryo. Dev Cell. 2005;8: 915–924. doi: 10.1016/j.devcel.2005.04.009 15935780
42. Mizutani CM, Meyer N, Roelink H, Bier E. Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm. PLoS Biol. 2006;4: e313. doi: 10.1371/journal.pbio.0040313 16968133
43. Biehs B, Francois V, Bier E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes & Development. 1996. pp. 2922–2934. doi: 10.1101/gad.10.22.2922 8918893
44. Ducuing A, Keeley C, Mollereau B, Vincent S. A DPP-mediated feed-forward loop canalizes morphogenesis during Drosophila dorsal closure. J Cell Biol. 2015;208: 239–248. doi: 10.1083/jcb.201410042 25601405
45. Gavin-Smyth J, Wang Y-C, Butler I, Ferguson EL. A Genetic Network Conferring Canalization to a Bistable Patterning System in Drosophila. Curr Biol. 2013;23: 2296–2302. doi: 10.1016/j.cub.2013.09.055 24184102
46. Ferguson EL, Anderson KV. decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell. 1992. pp. 451–461. doi: 10.1016/0092-8674(92)90514-d
47. Ozdemir A, Ma L, White KP, Stathopoulos A. Su(H)-mediated repression positions gene boundaries along the dorsal-ventral axis of Drosophila embryos. Dev Cell. 2014;31: 100–113. doi: 10.1016/j.devcel.2014.08.005 25313963
48. Port F, Chen H-M, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A. 2014;111: E2967–76. doi: 10.1073/pnas.1405500111 25002478
49. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics. 2014;196: 961–971. doi: 10.1534/genetics.113.160713 24478335
50. Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, Bier E. Multiplex detection of RNA expression in Drosophila embryos. Science. 2004;305: 846. doi: 10.1126/science.1099247 15297669
51. Umulis DM, Shimmi O, O’Connor MB, Othmer HG. Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev Cell. 2010;18: 260–274. doi: 10.1016/j.devcel.2010.01.006 20159596
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 12
Nejčtenější v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Architecture of the Escherichia coli nucleoid
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes