An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior
Autoři:
Tyler Buddell aff001; Vladislav Friedman aff001; Cody J. Drozd aff001; Christopher C. Quinn aff001
Působiště autorů:
Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
aff001
Vyšlo v časopise:
An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008488
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008488
Souhrn
Common and rare variants of the CACNA1C voltage-gated calcium channel gene have been associated with autism and other neurodevelopmental disorders including schizophrenia, bipolar disorder and ADHD. However, little is known about how CACNA1C variants affect cellular processes to alter neurodevelopment. The Timothy syndrome mutation is a rare de novo gain-of-function variant in CACNA1C that causes autism with high penetrance, providing a powerful avenue into investigating the role of CACNA1C variants in neurodevelopmental disorders. Here, we use egl-19, the C. elegans homolog of CACNA1C, to investigate the role of voltage-gated calcium channels in autism. We show that an egl-19(gof) mutation that is equivalent to the Timothy syndrome mutation can alter axon targeting and affect behavior in C. elegans. We find that wildtype egl-19 negatively regulates axon termination. The egl-19(gof) mutation represses axon termination to cause axon targeting defects that lead to the misplacement of electrical synapses and alterations in habituation to light touch. Moreover, genetic interactions indicate that the egl-19(gof) mutation functions with genes that promote selective autophagy to cause defects in axon termination and behavior. These results reveal a novel genetic mechanism whereby a de novo mutation in CACNA1C can drive alterations in circuit formation and behavior.
Klíčová slova:
Article-level metrics – Autism – Autophagic cell death – Axons – Electrical synapses – Mutation – Neurons – Genetic interactions
Zdroje
1. Li J, Zhao L, You Y, Lu T, Jia M, Yu H, et al. Schizophrenia Related Variants in CACNA1C also Confer Risk of Autism. PLoS One. 2015;10(7):e0133247. doi: 10.1371/journal.pone.0133247 26204268; PubMed Central PMCID: PMC4512676.
2. Lu AT, Dai X, Martinez-Agosto JA, Cantor RM. Support for calcium channel gene defects in autism spectrum disorders. Mol Autism. 2012;3(1):18. doi: 10.1186/2040-2392-3-18 23241247; PubMed Central PMCID: PMC3558437.
3. Alvarez-Mora MI, Calvo Escalona R, Puig Navarro O, Madrigal I, Quintela I, Amigo J, et al. Comprehensive molecular testing in patients with high functioning autism spectrum disorder. Mutat Res. 2016;784–785:46–52. doi: 10.1016/j.mrfmmm.2015.12.006 26845707.
4. Brett M, McPherson J, Zang ZJ, Lai A, Tan ES, Ng I, et al. Massively parallel sequencing of patients with intellectual disability, congenital anomalies and/or autism spectrum disorders with a targeted gene panel. PLoS One. 2014;9(4):e93409. doi: 10.1371/journal.pone.0093409 24690944; PubMed Central PMCID: PMC3972136.
5. D'Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, Lam AN, et al. Targeted DNA Sequencing from Autism Spectrum Disorder Brains Implicates Multiple Genetic Mechanisms. Neuron. 2015;88(5):910–7. doi: 10.1016/j.neuron.2015.11.009 26637798; PubMed Central PMCID: PMC4672379.
6. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21. doi: 10.1038/nature13908 25363768; PubMed Central PMCID: PMC4313871.
7. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93(2):249–63. doi: 10.1016/j.ajhg.2013.06.012 23849776; PubMed Central PMCID: PMC3738824.
8. RK CY, Merico D, Bookman M, J LH, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11. doi: 10.1038/nn.4524 28263302; PubMed Central PMCID: PMC5501701.
9. Schaaf CP, Sabo A, Sakai Y, Crosby J, Muzny D, Hawes A, et al. Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum Mol Genet. 2011;20(17):3366–75. doi: 10.1093/hmg/ddr243 21624971; PubMed Central PMCID: PMC3153303.
10. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31. doi: 10.1016/j.cell.2004.09.011 15454078.
11. Breitenkamp AF, Matthes J, Nass RD, Sinzig J, Lehmkuhl G, Nurnberg P, et al. Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. PLoS One. 2014;9(4):e95579. doi: 10.1371/journal.pone.0095579 24752249; PubMed Central PMCID: PMC3994086.
12. Strom SP, Stone JL, Ten Bosch JR, Merriman B, Cantor RM, Geschwind DH, et al. High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol Psychiatry. 2010;15(10):996–1005. doi: 10.1038/mp.2009.41 19455149; PubMed Central PMCID: PMC2889141.
13. Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48(5):552–5. doi: 10.1038/ng.3529 26998691; PubMed Central PMCID: PMC4986048.
14. Turner TN, Coe BP, Dickel DE, Hoekzema K, Nelson BJ, Zody MC, et al. Genomic Patterns of De Novo Mutation in Simplex Autism. Cell. 2017;171(3):710–22 e12. doi: 10.1016/j.cell.2017.08.047 28965761; PubMed Central PMCID: PMC5679715.
15. Farias GG, Guardia CM, De Pace R, Britt DJ, Bonifacino JS. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A. 2017;114(14):E2955–E64. doi: 10.1073/pnas.1616363114 28320970; PubMed Central PMCID: PMC5389300.
16. Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H, et al. Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Natl Acad Sci U S A. 2014;111(5):1981–6. doi: 10.1073/pnas.1324037111 24449864; PubMed Central PMCID: PMC3918797.
17. Lazar M, Miles LM, Babb JS, Donaldson JB. Axonal deficits in young adults with High Functioning Autism and their impact on processing speed. Neuroimage Clin. 2014;4:417–25. doi: 10.1016/j.nicl.2014.01.014 24624327; PubMed Central PMCID: PMC3950557.
18. Travers BG, Adluru N, Ennis C, Tromp do PM, Destiche D, Doran S, et al. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012;5(5):289–313. doi: 10.1002/aur.1243 22786754; PubMed Central PMCID: PMC3474893.
19. Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry. 2012;169(6):589–600. doi: 10.1176/appi.ajp.2011.11091447 22362397; PubMed Central PMCID: PMC3377782.
20. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61. doi: 10.1093/cercor/bhl006 16772313; PubMed Central PMCID: PMC4500121.
21. Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127(Pt 8):1811–21. doi: 10.1093/brain/awh199 15215213.
22. Schipul SE, Keller TA, Just MA. Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci. 2011;5:10. doi: 10.3389/fnsys.2011.00010 21390284; PubMed Central PMCID: PMC3046360.
23. Bader PL, Faizi M, Kim LH, Owen SF, Tadross MR, Alfa RW, et al. Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci U S A. 2011;108(37):15432–7. doi: 10.1073/pnas.1112667108 21878566; PubMed Central PMCID: PMC3174658.
24. Al-Mubarak B, Abouelhoda M, Omar A, AlDhalaan H, Aldosari M, Nester M, et al. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep. 2017;7(1):5679. doi: 10.1038/s41598-017-06033-1 28720891; PubMed Central PMCID: PMC5515956.
25. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49(4):515–26. doi: 10.1038/ng.3792 28191889; PubMed Central PMCID: PMC5374041.
26. Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med. 2015;21(2):185–91. doi: 10.1038/nm.3792 25621899.
27. Diep V, Seaver LH. Long QT syndrome with craniofacial, digital, and neurologic features: Is it useful to distinguish between Timothy syndrome types 1 and 2? Am J Med Genet A. 2015;167A(11):2780–5. doi: 10.1002/ajmg.a.37258 26227324.
28. Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res. 2011;108(5):607–18. doi: 10.1161/CIRCRESAHA.110.224279 21372292; PubMed Central PMCID: PMC3056572.
29. Kwok TC, Hui K, Kostelecki W, Ricker N, Selman G, Feng ZP, et al. A genetic screen for dihydropyridine (DHP)-resistant worms reveals new residues required for DHP-blockage of mammalian calcium channels. PLoS Genet. 2008;4(5):e1000067. Epub 2008/05/10. doi: 10.1371/journal.pgen.1000067 18464914; PubMed Central PMCID: PMC2362100.
30. Lee RY, Lobel L, Hengartner M, Horvitz HR, Avery L. Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 1997;16(20):6066–76. Epub 1997/10/08. doi: 10.1093/emboj/16.20.6066 9321386; PubMed Central PMCID: PMC1326290.
31. Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell. 2005;120(3):407–20. doi: 10.1016/j.cell.2004.12.017 15707898.
32. Schaefer AM, Hadwiger GD, Nonet ML. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron. 2000;26(2):345–56. doi: 10.1016/s0896-6273(00)81168-x 10839354.
33. Zhen M, Huang X, Bamber B, Jin Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron. 2000;26(2):331–43. doi: 10.1016/s0896-6273(00)81167-8 10839353.
34. Grill B, Bienvenut WV, Brown HM, Ackley BD, Quadroni M, Jin Y. C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron. 2007;55(4):587–601. doi: 10.1016/j.neuron.2007.07.009 17698012.
35. Liao EH, Hung W, Abrams B, Zhen M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature. 2004;430(6997):345–50. doi: 10.1038/nature02647 15208641.
36. Schafer WR, Kenyon CJ. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995;375(6526):73–8. doi: 10.1038/375073a0 7723846.
37. Damaj L, Lupien-Meilleur A, Lortie A, Riou E, Ospina LH, Gagnon L, et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet. 2015;23(11):1505–12. doi: 10.1038/ejhg.2015.21 25735478; PubMed Central PMCID: PMC4613477.
38. Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19(9):1194–6. doi: 10.1038/nn.4352 27479843.
39. Frokjaer-Jensen C, Kindt KS, Kerr RA, Suzuki H, Melnik-Martinez K, Gerstbreih B, et al. Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons. J Neurobiol. 2006;66(10):1125–39. doi: 10.1002/neu.20261 16838374.
40. Saheki Y, Bargmann CI. Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha(2)delta subunit UNC-36. Nat Neurosci. 2009;12(10):1257–65. doi: 10.1038/nn.2383 19718034; PubMed Central PMCID: PMC2805665.
41. Laine V, Frokjaer-Jensen C, Couchoux H, Jospin M. The alpha1 subunit EGL-19, the alpha2/delta subunit UNC-36, and the beta subunit CCB-1 underlie voltage-dependent calcium currents in Caenorhabditis elegans striated muscle. J Biol Chem. 2011;286(42):36180–7. Epub 2011/09/01. doi: 10.1074/jbc.M111.256149 21878625; PubMed Central PMCID: PMC3196126.
42. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15. doi: 10.1038/nature13772 25363760; PubMed Central PMCID: PMC4402723.
43. Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, et al. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell. 2005;16(7):3273–88. doi: 10.1091/mbc.E05-01-0060 15843430; PubMed Central PMCID: PMC1165410.
44. Bounoutas A, Zheng Q, Nonet ML, Chalfie M. mec-15 encodes an F-box protein required for touch receptor neuron mechanosensation, synapse formation and development. Genetics. 2009;183(2):607–17, 1SI-4SI. Epub 2009/08/05. doi: 10.1534/genetics.109.105726 19652181; PubMed Central PMCID: PMC2766320.
45. Marcette JD, Chen JJ, Nonet ML. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. Elife. 2014;3:e01637. Epub 2014/02/27. doi: 10.7554/eLife.01637 24569480; PubMed Central PMCID: PMC3930908.
46. Meng L, Chen CH, Yan D. Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons. PLoS Genet. 2016;12(3):e1005948. doi: 10.1371/journal.pgen.1005948 27015090; PubMed Central PMCID: PMC4807823.
47. Kaletsky R, Lakhina V, Arey R, Williams A, Landis J, Ashraf J, et al. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature. 2016;529(7584):92–6. Epub 2015/12/18. doi: 10.1038/nature16483 26675724; PubMed Central PMCID: PMC4708089.
48. Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy. 2010;6(3):330–44. doi: 10.4161/auto.6.3.11226 20168092.
49. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010;38(2):265–79. doi: 10.1016/j.molcel.2010.04.007 20417604; PubMed Central PMCID: PMC2867245.
50. Lin L, Yang P, Huang X, Zhang H, Lu Q, Zhang H. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol. 2013;201(1):113–29. doi: 10.1083/jcb.201209098 23530068; PubMed Central PMCID: PMC3613692.
51. Hersh BM, Hartwieg E, Horvitz HR. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci U S A. 2002;99(7):4355–60. doi: 10.1073/pnas.062065399 11904372; PubMed Central PMCID: PMC123652.
52. Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H. Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci U S A. 2004;101(13):4483–8. doi: 10.1073/pnas.0400709101 15070744; PubMed Central PMCID: PMC384773.
53. Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci. 1985;5(4):956–64. doi: 10.1523/JNEUROSCI.05-04-00956.1985 3981252.
54. Hobert O, Moerman DG, Clark KA, Beckerle MC, Ruvkun G. A conserved LIM protein that affects muscular adherens junction integrity and mechanosensory function in Caenorhabditis elegans. J Cell Biol. 1999;144(1):45–57. doi: 10.1083/jcb.144.1.45 9885243; PubMed Central PMCID: PMC2148118.
55. Rankin CH, Beck CD, Chiba CM. Caenorhabditis elegans: a new model system for the study of learning and memory. Behav Brain Res. 1990;37(1):89–92. doi: 10.1016/0166-4328(90)90074-o 2310497.
56. Zhang Y, Chalfie M. MTD-1, a touch-cell-specific membrane protein with a subtle effect on touch sensitivity. Mech Dev. 2002;119(1):3–7. doi: 10.1016/s0925-4773(02)00293-9 12385749.
57. Grice SJ, Liu JL, Webber C. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism. PLoS Genet. 2015;11(3):e1004998. doi: 10.1371/journal.pgen.1004998 25816101; PubMed Central PMCID: PMC4376901.
58. Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci. 2017;20(8):1043–51. doi: 10.1038/nn.4589 28628100; PubMed Central PMCID: PMC5539915.
59. Chen S, Fragoza R, Klei L, Liu Y, Wang J, Roeder K, et al. An interactome perturbation framework prioritizes damaging missense mutations for developmental disorders. Nat Genet. 2018;50(7):1032–40. doi: 10.1038/s41588-018-0130-z 29892012; PubMed Central PMCID: PMC6314957.
60. Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The Heritability of Autism Spectrum Disorder. JAMA. 2017;318(12):1182–4. doi: 10.1001/jama.2017.12141 28973605; PubMed Central PMCID: PMC5818813.
61. Yook KJ, Proulx SR, Jorgensen EM. Rules of nonallelic noncomplementation at the synapse in Caenorhabditis elegans. Genetics. 2001;158(1):209–20. 11333231; PubMed Central PMCID: PMC1461624.
62. Xu Y, Quinn CC. MIG-10 functions with ABI-1 to mediate the UNC-6 and SLT-1 axon guidance signaling pathways. PLoS Genet. 2012;8(11):e1003054. Epub 2012/12/05. doi: 10.1371/journal.pgen.1003054 23209429; PubMed Central PMCID: PMC3510047.
63. Dedic N, Pohlmann ML, Richter JS, Mehta D, Czamara D, Metzger MW, et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry. 2018;23(3):533–43. doi: 10.1038/mp.2017.133 28696432; PubMed Central PMCID: PMC5822460.
64. Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316. doi: 10.1038/ncomms13316 27824329; PubMed Central PMCID: PMC5105161 member of Pacific Biosciences, Inc. (2009–2013) and SynapDx Corp. (2011–2013); E.E.E. is a consultant for Kunming University of Science and Technology (KUST) as part of the 1,000 China Talent Program. The other authors declare no competing financial interests.
65. Dragich JM, Kuwajima T, Hirose-Ikeda M, Yoon MS, Eenjes E, Bosco JR, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. Elife. 2016;5. doi: 10.7554/eLife.14810 27648578; PubMed Central PMCID: PMC5030082.
66. Ban BK, Jun MH, Ryu HH, Jang DJ, Ahmad ST, Lee JA. Autophagy negatively regulates early axon growth in cortical neurons. Mol Cell Biol. 2013;33(19):3907–19. doi: 10.1128/MCB.00627-13 23918799; PubMed Central PMCID: PMC3811863.
67. Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol. 2009;187(1):71–9. doi: 10.1083/jcb.200907109 19786572; PubMed Central PMCID: PMC2762098.
68. Hill SE, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colon-Ramos DA. Maturation and Clearance of Autophagosomes in Neurons Depends on a Specific Cysteine Protease Isoform, ATG-4.2. Dev Cell. 2019. doi: 10.1016/j.devcel.2019.02.013 30880001.
69. Stavoe AK, Hill SE, Hall DH, Colon-Ramos DA. KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev Cell. 2016;38(2):171–85. doi: 10.1016/j.devcel.2016.06.012 27396362; PubMed Central PMCID: PMC4961624.
70. Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–9. doi: 10.1038/nn.3307 23313911; PubMed Central PMCID: PMC3568452.
71. Tulgren ED, Baker ST, Rapp L, Gurney AM, Grill B. PPM-1, a PP2Calpha/beta phosphatase, regulates axon termination and synapse formation in Caenorhabditis elegans. Genetics. 2011;189(4):1297–307. Epub 2011/10/05. doi: 10.1534/genetics.111.134791 21968191; PubMed Central PMCID: PMC3241410.
72. Kamijo S, Ishii Y, Horigane SI, Suzuki K, Ohkura M, Nakai J, et al. A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration. J Neurosci. 2018;38(24):5551–66. Epub 2018/05/19. doi: 10.1523/JNEUROSCI.2357-17.2018 29773754.
73. Limpitikul WB, Dick IE, Ben-Johny M, Yue DT. An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca(2+)-dependent regulation. Sci Rep. 2016;6:27235. doi: 10.1038/srep27235 27255217; PubMed Central PMCID: PMC4891671.
74. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9. doi: 10.1016/S0140-6736(12)62129-1 23453885; PubMed Central PMCID: PMC3714010.
75. Yoshimizu T, Pan JQ, Mungenast AE, Madison JM, Su S, Ketterman J, et al. Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry. 2015;20(2):284. doi: 10.1038/mp.2014.181 25623946.
76. Ch'ng Q, Williams L, Lie YS, Sym M, Whangbo J, Kenyon C. Identification of genes that regulate a left-right asymmetric neuronal migration in Caenorhabditis elegans. Genetics. 2003;164(4):1355–67. Epub 2003/08/22. 12930745; PubMed Central PMCID: PMC1462652.
77. Xu Y, Quinn CC. Transition between synaptic branch formation and synaptogenesis is regulated by the lin-4 microRNA. Dev Biol. 2016;420(1):60–6. Epub 2016/10/25. doi: 10.1016/j.ydbio.2016.10.010 27746167; PubMed Central PMCID: PMC5841448.
78. Chalfie M, Hart AC, Rankin CH, Goodman MB. Assaying mechanosensation. WormBook. 2014. doi: 10.1895/wormbook.1.172.1, http://www.wormbook.org 25093996
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 12
Nejčtenější v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Architecture of the Escherichia coli nucleoid
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes