Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice
Autoři:
Rena M. Schweizer aff001; Jonathan P. Velotta aff001; Catherine M. Ivy aff002; Matthew R. Jones aff001; Sarah M. Muir aff002; Gideon S. Bradburd aff003; Jay F. Storz aff004; Graham R. Scott aff002; Zachary A. Cheviron aff001
Působiště autorů:
Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
aff001; Department of Biology, McMaster University, Hamilton, ON, Canada
aff002; Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States of America
aff003; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
aff004
Vyšlo v časopise:
Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008420
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008420
Souhrn
Evolutionary adaptation to extreme environments often requires coordinated changes in multiple intersecting physiological pathways, but how such multi-trait adaptation occurs remains unresolved. Transcription factors, which regulate the expression of many genes and can simultaneously alter multiple phenotypes, may be common targets of selection if the benefits of induced changes outweigh the costs of negative pleiotropic effects. We combined complimentary population genetic analyses and physiological experiments in North American deer mice (Peromyscus maniculatus) to examine links between genetic variation in transcription factors that coordinate physiological responses to hypoxia (hypoxia-inducible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive subunit of HIF-2α, exhibited extreme allele frequency differences between highland and lowland populations. Broader geographic sampling confirmed that Epas1 genotype varied predictably with altitude throughout the western US. We then discovered that Epas1 genotype influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF targets and genes involved in catecholamine signaling) in the heart and adrenal gland. Finally, we used a demographically-informed selection scan to show that Epas1 variants have experienced a history of spatially varying selection, suggesting that differences in cardiovascular function and gene regulation contribute to high-altitude adaptation. Our results suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice and provide general insights into the role that highly pleiotropic transcription factors may play in the process of environmental adaptation.
Klíčová slova:
Catecholamines – Deer – Evolutionary adaptation – Gene expression – Heart rate – Hypoxia – Medical hypoxia – Variant genotypes
Zdroje
1. Storz JF, Bridgham JT, Kelly SA, Garland T Jr. Genetic approaches in comparative and evolutionary physiology. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2015;309: R197–R214. doi: 10.1152/ajpregu.00100.2015 26041111
2. Wagner A. Metabolic networks and their evolution. Soyer OS, editor. Evolutionary Systems Biology. 2012;: 29–52. doi: 10.1007/978-1-4614-3567-9
3. Wagner GP, Lynch VJ. The gene regulatory logic of transcription factor evolution. Trends in Ecology & Evolution. 2008;23: 377–385. doi: 10.1016/j.tree.2008.03.006 18501470
4. Lynch VJ, Wagner GP. Resurrecting the role of transcription factor change in developmental evolution. Evolution. 2008;62: 2131–2154. doi: 10.1111/j.1558-5646.2008.00440.x 18564379
5. Stern DL, Orgogozo V. Is Genetic Evolution Predictable? Science. American Association for the Advancement of Science; 2009;323: 746–751. doi: 10.1126/science.1158997 19197055
6. Carroll SB. Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution. Cell. 2008;134: 25–36. doi: 10.1016/j.cell.2008.06.030 18614008
7. Bouverot P. Adaptation to altitude-hypoxia in vertebrates. 1985. Springer Science & Business Media, Berlin, Germany.
8. Beall CM, Cavalleri GL, Deng L. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci. 2010;107: 11459–11464. doi: 10.1073/pnas.1002443107 20534544
9. Scott GR, Milsom WK. Control of breathing and adaptation to high altitude in the bar-headed goose. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2007;293: R379–R391. doi: 10.1152/ajpregu.00161.2007 17491113
10. Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol. 2010;213: 4125–4136. doi: 10.1242/jeb.048181 21112992
11. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine. 2001; 7:345–350. 11516994
12. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, et al. Genetic Evidence for High-Altitude Adaptation in Tibet. Science. 2010;329: 72–75. doi: 10.1126/science.1189406 20466884
13. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, et al. Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science. 2010;329: 75–78. doi: 10.1126/science.1190371 20595611
14. Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, et al. Hypoxia Adaptations in the Grey Wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genet. 2014;10: e1004466. doi: 10.1371/journal.pgen.1004466 25078401
15. Pan S, Zhang T, Rong Z, Hu L, Gu Z, Wu Q, et al. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird. Molecular Ecology. 2017;26: 2993–3010. doi: 10.1111/mec.14090 28277617
16. Hodson EJ, Nicholls LG, Turner PJ, Llyr R, Fielding JW, Douglas G, et al. Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF-2 pathway. J Physiol. 2015;594: 1179–1195. doi: 10.1113/JP271050 26337139
17. Befani C, Liakos P. The role of hypoxia-inducible factor-2 alpha in angiogenesis. J Cell Physiol. 2018;233: 9087–9098. doi: 10.1002/jcp.26805 29968905
18. Petousi N, Croft QPP, Cavalleri GL, Cheng H-Y, Formenti F, Ishida K, et al. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. Journal of Applied Physiology. 2014;116: 893–904. doi: 10.1152/japplphysiol.00535.2013 24030663
19. Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, et al. A genetic mechanism for Tibetan high-altitude adaptation. Nature. 2014;46: 951–956. doi: 10.1038/ng.3067 25129147
20. Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L, Adam J, et al. PHD2 inactivation in Type I cells drives HIF‐2α‐dependent multilineage hyperplasia and the formation of paraganglioma‐like carotid bodies. J Physiol. 2018;596: 4393–4412. doi: 10.1113/JP275996 29917232
21. Brown ST, Kelly KF, Daniel JM, Nurse CA. Hypoxia inducible factor (HIF)-2α is required for the development of the catecholaminergic phenotype of sympathoadrenal cells. Journal of Neurochemistry. 2009;110: 622–630. doi: 10.1111/j.1471-4159.2009.06153.x 19457096
22. Cowburn AS, Crosby A, Macias D, Branco C, Colaço RDDR, Southwood M, et al. HIF2α–arginase axis is essential for the development of pulmonary hypertension. PNAS. 2016;113: 8801–8806. doi: 10.1073/pnas.1602978113 27432976
23. Chappell MA, Snyder LR. Biochemical and physiological correlates of deer mouse alpha-chain hemoglobin polymorphisms. PNAS. 1984;81: 5484–5488. doi: 10.1073/pnas.81.17.5484 6591201
24. Cheviron ZA, Bachman GC, Storz JF. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. J Exp Biol. 2013;216: 1160–1166. doi: 10.1242/jeb.075598 23197099
25. Cheviron ZA, Bachmana GC, Connaty AD, McClelland GB, Storz JF. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. PNAS. 2012;109: 8635–8640. doi: 10.1073/pnas.1120523109 22586089
26. Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation. Molecular Biology and Evolution. 2015;32: 1962–1976. doi: 10.1093/molbev/msv076 25851956
27. Hayes J, O'Connor C. Natural selection on thermogenic capacity of high-altitude deer mice. Evolution. 1999;53: 1280–1287. doi: 10.1111/j.1558-5646.1999.tb04540.x 28565539
28. Storz JF, Runck AM, Moriyama H, Weber RE, Fago A. Genetic differences in hemoglobin function between highland and lowland deer mice. J Exp Biol. 2010;213: 2565–2574. doi: 10.1242/jeb.042598 20639417
29. Snyder LRG. Deer Mouse Hemoglobins: Is There Genetic Adaptation to High Altitude? BioScience. 1981;31: 299–304. doi: 10.2307/1308147
30. Snyder LR, Born S, Lechner AJ. Blood oxygen affinity in high- and low-altitude populations of the deer mouse. Respir Physiol. 1982;48: 89–105. doi: 10.1016/0034-5687(82)90052-4 7111920
31. Cheviron ZA, Connaty AD, McClelland GB, Storz JF. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution. 2014;68: 48–62. doi: 10.1111/evo.12257 24102503
32. Lui MA, Mahalingam S, Patel P, Connaty AD, Ivy CM, Cheviron ZA, et al. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2015;308: R779–R791. doi: 10.1152/ajpregu.00362.2014 25695288
33. Velotta JP, Jones J, Wolf CJ, Cheviron ZA. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice. Molecular Ecology. 2016;25: 2870–2886. doi: 10.1111/mec.13661 27126783
34. Ivy CM, Scott GR. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes. Acta Physiol. 1st ed. 2017;112: 123–17. doi: 10.1111/apha.12912 28640969
35. Tate KB, Ivy CM, Velotta JP, Storz JF, McClelland GB, Cheviron ZA, et al. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. Journal of Experimental Biology. 2017;220: 3616–3620. doi: 10.1242/jeb.164491 28839010
36. Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution. 2018;431: 261–16. doi: 10.1111/evo.13626 30318588
37. Dawson NJ, Lyons SA, Henry DA, Scott GR. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude. Acta Physiol. 2018;223: e13030–16. doi: 10.1111/apha.13030 29316265
38. Mahalingam S, McClelland GB, Scott GR. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice. J Physiol. 2017;595: 4785–4801. doi: 10.1113/JP274130 28418073
39. Lau DS, Connaty AD, Mahalingam S, Wall N, Cheviron ZA, Storz JF, et al. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2017;312: R400–R411. doi: 10.1152/ajpregu.00365.2016 28077391
40. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81: 559–575. doi: 10.1086/519795 17701901
41. Alexander D, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research. 2009;19: 1655. doi: 10.1101/gr.094052.109 19648217
42. Weir B, Cockerham C. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38: 1358–1370. doi: 10.1111/j.1558-5646.1984.tb05657.x 28563791
43. Storz JF, Natarajan C, Cheviron ZA, Hoffmann FG, Kelly JK. Altitudinal Variation at Duplicated -Globin Genes in Deer Mice: Effects of Selection, Recombination, and Gene Conversion. Genetics. 2012;190: 203–216. doi: 10.1534/genetics.111.134494 22042573
44. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9: 677–684. doi: 10.1038/nm0603-677 12778166
45. Lohman BK, Weber JN, Bolnick DI. Evaluation of TagSeq, a reliable low-cost alternative for RNAseq. Mol Ecol Resour. 2016;16: 1315–1321. doi: 10.1111/1755-0998.12529 27037501
46. Scott AL, Pranckevicius NA, Nurse CA, Scott GR. The regulation of catecholamine release from the adrenal medulla is altered in deer mice (Peromyscus maniculatus) native to high altitudes. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2019;584: 149–R417. doi: 10.1152/ajpregu.00005.2019
47. Hamid SA, Baxter GF. Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. Pharmacology & Therapeutics. 2005;105: 95–112. doi: 10.1016/j.pharmthera.2004.08.012 15670621
48. Bohm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovascular Research. 2007;76: 8–18. doi: 10.1016/j.cardiores.2007.06.004 17617392
49. Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene. 2015;569: 1–6. doi: 10.1016/j.gene.2015.06.029 26074089
50. Gutenkunst R, Hernandez R, Williamson S, Bustamante C. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5: e1000695. doi: 10.1371/journal.pgen.1000695 19851460
51. Tine M, Kuhl H, Gagnaire P-A, Louro B, Desmarais E, Martins RST, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Communications. 2014;5: 1–10. doi: 10.1038/ncomms6770 25534655
52. Coffman AJ, Hsieh PH, Gravel S. Computationally efficient composite likelihood statistics for demographic inference. Molecular Biology and Evolution. 2016. doi: 10.1093/molbev/msv255/-/DC1
53. Ewing G, Hermisson J. MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics. 2010;26: 2064–2065. doi: 10.1093/bioinformatics/btq322 20591904
54. Mayer U, Saher G, Fässler R, Bornemann A, Echtermeyer F, Mark von der H, et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 1997;17: 318–323. doi: 10.1038/ng1197-318 9354797
55. Tomás M, Vázquez E, Fernández-Fernández JM, Subirana I, Plata C, Heras M, et al. Genetic variation in the KCNMA1 potassium channel α subunit as risk factor for severe essential hypertension and myocardial infarction. Journal of Hypertension. 2008;26: 2147–2153. doi: 10.1097/HJH.0b013e32831103d8 18854754
56. Harned J, Ferrell J, Nagar S, Goralska M, Fleisher LN, McGahan MC. Ceruloplasmin alters intracellular iron regulated proteins and pathways: Ferritin, transferrin receptor, glutamate and hypoxia-inducible factor-1α. Experimental Eye Research. 2012;97: 90–97. doi: 10.1016/j.exer.2012.02.001 22343016
57. Simonson TS, Yang Y, Huff CD, Yun H, Qin G. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329: 72–75. doi: 10.1126/science.1189406 20466884
58. Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Molecular Biology and Evolution. 2019;19: 1655. doi: 10.1093/molbev/msz158 31273382
59. Julian CG, Moore LG. Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes. 2019;10: 150–21. doi: 10.3390/genes10020150 30781443
60. Nelson TC, Jones MR, Velotta JP, Dhawanjewar AS, Schweizer RM. UNVEILing connections between genotype, phenotype, and fitness in natural populations. Molecular Ecology. 2019;28: 1–31. doi: 10.1111/mec.14976
61. Dempsey JA, Morgan BJ. Humans In Hypoxia: A Conspiracy Of Maladaptation?! Physiology. 2015;30: 304–316. doi: 10.1152/physiol.00007.2015 26136544
62. Wu T, Kayser B. High altitude adaptation in Tibetans. High Altitude Medicine & Biology. 2006;7: 193–208. doi: 10.1089/ham.2006.7.193 16978132
63. Meyer M, Kircher M. Illumina Sequencing Library Preparation for Highly Multiplexed Target Capture and Sequencing. Cold Spring Harbor Protocols. 2010. doi: 10.1101/pdb.prot5448 20516186
64. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26: 589–595. doi: 10.1093/bioinformatics/btp698 20080505
65. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943
66. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27: 2156–2158. doi: 10.1093/bioinformatics/btr330 21653522
67. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26: 2069–2070. doi: 10.1093/bioinformatics/btq330 20562413
68. Bradley R, Durish ND, Rogers DS, Miller JR, Engstrom MD, Kilpatrick CW. Toward a molecular phylogeny for Peromyscus: evidence from mitochondrial cytochrome-b sequences. Journal of Mammalogy. 2007;88: 1146–1159. doi: 10.1644/06-MAMM-A-342R.1 19924266
69. Miller JR, Engstrom MD. The Relationships of Major Lineages within Peromyscine Rodents: A Molecular Phylogenetic Hypothesis and Systematic Reappraisal. Journal of Mammalogy. 2008;89: 1279–1295. doi: 10.2307/25145219
70. Natarajan C, Hoffmann FG, Lanier HC, Wolf CJ, Cheviron ZA, Spangler ML, et al. Intraspecific Polymorphism, Interspecific Divergence, and the Origins of Function-Altering Mutations in Deer Mouse Hemoglobin. Molecular Biology and Evolution. 2015;32: 978–997. doi: 10.1093/molbev/msu403 25556236
71. Derryberry EP, Derryberry GE, Maley JM, Brumfield RT. hzar: hybrid zone analysis using an R software package. Mol Ecol Resour. 2013;14: 652–663. doi: 10.1111/1755-0998.12209 24373504
72. Ivy CM, Scott GR. Ventilatory acclimatization to hypoxia in mice: Methodological considerations. Respiratory Physiology & Neurobiology. 2017;235: 95–103. doi: 10.1016/j.resp.2016.10.012 27989891
73. Lighton JR. Measuring Metabolic Rates: A Manual for Scientists: A Manual for Scientists: Oxford University Press. 2008.
74. Rosenmann M, Morrison P. Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2. Am J Physiol. 1974;226: 490–495. doi: 10.1152/ajplegacy.1974.226.3.490 4817400
75. Scherle W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie. 1970;26: 57–60. 5530651
76. Nikel KE, Shanishchara NK, Ivy CM, Dawson NJ, Scott GR. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitudes. Comparative Biochemistry and Physiology, Part B. 2017;224: 98–104. doi: 10.1016/j.cbpb.2017.11.009 29175484
77. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9: 671–675. doi: 10.1038/nmeth.2089 22930834
78. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930. doi: 10.1093/bioinformatics/btt656 24227677
79. Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007;23: 2881–2887. doi: 10.1093/bioinformatics/btm453 17881408
80. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 2010;11: R25. doi: 10.1186/gb-2010-11-3-r25 20196867
81. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research. 2012;40: 4288–4297. doi: 10.1093/nar/gks042 22287627
82. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. 1995;57: 289–300.
83. Dengler VL, Galbraith MD, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology. 2014;49: 1–15. doi: 10.3109/10409238.2013.838205 24099156
84. Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Research. 2010;38: 2332–2345. doi: 10.1093/nar/gkp1205 20061373
85. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 2000;28: 27–30. doi: 10.1093/nar/28.1.27 10592173
86. Uchimura A, Higuchi M, Minakuchi Y, Ohno M, Toyoda A, Fujiyama A, et al. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Research. 2015;25: 1125–1134. doi: 10.1101/gr.186148.114 26129709
87. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Research. 2016;: gkw199. doi: 10.1093/nar/gkw199 27098042
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 11
Nejčtenější v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis