-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Contribution of Common Genetic Variants to Familial Aggregation of Disease and Implications for Sequencing Studies
Autoři: Andrew Schlafly aff001; Ruth M. Pfeiffer aff003; Eduardo Nagore aff004; Susana Puig aff005; Donato Calista aff006; Paola Ghiorzo aff007; Chiara Menin aff008; Maria Concetta Fargnoli aff009; Ketty Peris aff010; Lei Song aff003; Tongwu Zhang aff001; Jianxin Shi aff003; Maria Teresa Landi aff001; Joshua Neil Sampson aff003
Působiště autorů: Integrative Tumor Epidemiology Branch: Division of Cancer Epidemiology and GeneticsNational Cancer Institute, Rockville, Maryland, United States of America aff001; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff002; Biostatistics Branch: Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America aff003; Department of Dermatology, Instituto Valenciano de Oncología, València, Spain aff004; Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain aff005; Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy aff006; Genetics of Rare Cancers, Department of Internal Medicine (DiMI), University of Genoa and Ospedale Policlinico San Martino Genoa, Genoa, Italy aff007; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV—IRCCS, Padua, Italy aff008; Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy aff009; Institute of Dermatology, Catholic University, Rome, Italy aff010; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy aff011
Vyšlo v časopise: Contribution of Common Genetic Variants to Familial Aggregation of Disease and Implications for Sequencing Studies. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008490
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008490Souhrn
Despite genetics being accepted as the primary cause of familial aggregation for most diseases, it is still unclear whether afflicted families are likely to share a single highly penetrant rare variant, many minimally penetrant common variants, or a combination of the two types of variants. We therefore use recent estimates of SNP heritability and the liability threshold model to estimate the proportion of afflicted families likely to carry a rare, causal variant. We then show that Polygenic Risk Scores (PRS) may be useful for identifying families likely to carry such a rare variant and therefore for prioritizing families to include in sequencing studies with that aim. Specifically, we introduce a new statistic that estimates the proportion of individuals carrying causal rare variants based on the family structure, disease pattern, and PRS of genotyped individuals. Finally, we consider data from the MelaNostrum consortium and show that, despite an estimated PRS heritability of only 0.05 for melanoma, families carrying putative causal variants had a statistically significantly lower PRS, supporting the idea that PRS prioritization may be a useful future tool. However, it will be important to evaluate whether the presence of rare mendelian variants are generally associated with the proposed test statistic or lower PRS in future and larger studies.
Klíčová slova:
Alleles – Consortia – Epidemiology – Genetics of disease – Genotyping – Heredity – Melanomas – Test statistics
Zdroje
1. Khoury MJ, Beaty TH, Liang KY. Can Familial Aggregation of Disease Be Explained by Familial Aggregation of Environmental Risk-Factors. Am J Epidemiol. 1988;127(3):674–83. PubMed PMID: WOS:A1988M162600023. doi: 10.1093/oxfordjournals.aje.a114842 3341366
2. Online Mendelian Inheritance in Man, OMIM McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) [12/12/2018]. Available from: https://omim.org/.
3. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219-+. PubMed PMID: WOS:000443151300011. doi: 10.1038/s41588-018-0183-z 30104762
4. Potrony M, Puig-Butille JA, Aguilera P, Badenas C, Tell-Marti G, Carrera C, et al. Prevalence of MITF p.E318K in Patients With Melanoma Independent of the Presence of CDKN2A Causative Mutations. Jama Dermatol. 2016;152(4):405–12. PubMed PMID: WOS:000373916600012. doi: 10.1001/jamadermatol.2015.4356 26650189
5. Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ, Consortium U. Reevaluation of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986-+. PubMed PMID: WOS:000404253300006. doi: 10.1038/ng.3865 28530675
6. Gormley P, Kurki MI, Hiekkala ME, Veerapen K, Happola P, Mitchell AA, et al. Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families (vol 98, pg 743, 2018). Neuron. 2018;99(5):1098-. PubMed PMID: WOS:000443712200015. doi: 10.1016/j.neuron.2018.08.029 30189203
7. Jarauta E, Perez-Ruiz MR, Perez-Calahorra S, Mateo-Gallego R, Cenarro A, Cofan M, et al. Lipid phenotype and heritage pattern in families with genetic hypercholesterolemia not related to LDLR, APOB, PCSK9, or APOE. J Clin Lipidol. 2016;10(6):1397–405. PubMed PMID: WOS:000390829400015. doi: 10.1016/j.jacl.2016.09.011 27919357
8. Ripatti P, Ramo JT, Soderlund S, Surakka I, Matikainen N, Pirinen M, et al. The Contribution of GWAS Loci in Familial Dyslipidemias. Plos Genet. 2016;12(5). PubMed PMID: WOS:000377197100067.
9. Levine AP, Pontikos N, Schiff ER, Jostins L, Speed D, Lovat LB, et al. Genetic Complexity of Crohn's Disease in Two Large Ashkenazi Jewish Families. Gastroenterology. 2016;151(4):698–709. PubMed PMID: WOS:000389548500027. doi: 10.1053/j.gastro.2016.06.040 27373512
10. Tosto G, Bird TD, Tsuang D, Bennett DA, Boeve BF, Cruchaga C, et al. Polygenic risk scores in familial Alzheimer disease. Neurology. 2017;88(12):1180–6. PubMed PMID: WOS:000397383000018. doi: 10.1212/WNL.0000000000003734 28213371
11. Boies S, Merette C, Paccalet T, Maziade M, Bureau A. Polygenic risk scores distinguish patients from non-affected adult relatives and from normal controls in schizophrenia and bipolar disorder multi-affected kindreds. Am J Med Genet B. 2018;177(3):329–36. PubMed PMID: WOS:000427234000005.
12. Kuchenbaecker KB, McGuffog L, Barrowdale D, Lee A, Soucy P, Dennis J, et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. Jnci-J Natl Cancer I. 2017;109(7). PubMed PMID: WOS:000405496200004.
13. Li HY, Feng BJ, Miron A, Chen XQ, Beesley J, Bimeh E, et al. Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab. Genet Med. 2017;19(1):30–5. PubMed PMID: WOS:000391911100005. doi: 10.1038/gim.2016.43 27171545
14. Muranen TA, Mavaddat N, Khan S, Fagerholm R, Pelttari L, Lee A, et al. Polygenic risk score is associated with increased disease risk in 52 Finnish breast cancer families. Breast Cancer Res Tr. 2016;158(3):463–9. PubMed PMID: WOS:000380711700006.
15. Sawyer S, Mitchell G, McKinley J, Chenevix-Trench G, Beesley J, Chen XQ, et al. A Role for Common Genomic Variants in the Assessment of Familial Breast Cancer. J Clin Oncol. 2012;30(35):4330–6. PubMed PMID: WOS:000312195900014. doi: 10.1200/JCO.2012.41.7469 23109704
16. Begg CB. On the use of familial aggregation in population-based case probands for calculating penetrance. J Natl Cancer I. 2002;94(16):1221–6. PubMed PMID: WOS:000177474200011.
17. Jostins L, Levine AP, Barrett JC. Using Genetic Prediction from Known Complex Disease Loci to Guide the Design of Next-Generation Sequencing Experiments. Plos One. 2013;8(10). PubMed PMID: WOS:000326029300022.
18. Ward WF, JM. Cutaneous Melanoma: Etiology and Therapy. Brisbane, AU: Codon Publications; 2017.
19. Wright S. The results of crosses between inbred strains of guinea pigs, differing in number of digits. Genetics. 1934;19(6):0537–51. PubMed PMID: WOS:000201599900003.
20. Shi JX, Yang XHR, Ballew B, Rotunno M, Calista D, Fargnoli MC, et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet. 2014;46(5):482–6. PubMed PMID: WOS:000335422900016. doi: 10.1038/ng.2941 24686846
21. Landi MT, Goldstein AM, Tsang S, Munroe D, Modi W, Ter-Minassian M, et al. Genetic susceptibility in familial melanoma from northeastern Italy. J Med Genet. 2004;41(7):557–66. Epub 2004/07/06. doi: 10.1136/jmg.2003.016907 15235029; PubMed Central PMCID: PMC1735833.
22. Gu FY, Chen TH, Pfeiffer RM, Fargnoli MC, Calista D, Ghiorzo P, et al. Combining common genetic variants and non-genetic risk factors to predict risk of cutaneous melanoma. Hum Mol Genet. 2018;27(23):4145–56. PubMed PMID: WOS:000452536200012. doi: 10.1093/hmg/ddy282 30060076
23. Potrony M, Badenas C, Aguilera P, Puig-Butille JA, Carrera C, Malvehy J, et al. Update in genetic susceptibility in melanoma. Ann Transl Med. 2015;3(15):210. Epub 2015/10/22. doi: 10.3978/j.issn.2305-5839.2015.08.11 26488006; PubMed Central PMCID: PMC4583600.
Štítky
Genetika Reprodukční medicína
Článek The joy of balancersČlánek UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohortsČlánek Inference of recombination maps from a single pair of genomes and its application to ancient samplesČlánek Role of α-Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growthČlánek SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in DrosophilaČlánek Cardiac Snail family of transcription factors directs systemic lipid metabolism in DrosophilaČlánek Eukaryote hybrid genomesČlánek The great hairball gambit
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2019 Číslo 11
-
Všechny články tohoto čísla
- A meta-analysis of genome-wide association studies of epigenetic age acceleration
- DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis
- Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp
- Eukaryote hybrid genomes
- Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice
- The joy of balancers
- Sumoylation of the DNA polymerase ε by the Smc5/6 complex contributes to DNA replication
- The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε
- UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts
- Mouse protein coding diversity: What’s left to discover?
- Inference of recombination maps from a single pair of genomes and its application to ancient samples
- Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania
- Role of α-Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growth
- Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations
- Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- NPM and NPM-MLF1 interact with chromatin remodeling complexes and influence their recruitment to specific genes
- Gpr63 is a modifier of microcephaly in Ttc21b mouse mutants
- Genome-wide identification of short 2′,3′-cyclic phosphate-containing RNAs and their regulation in aging
- SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila
- Photodamage repair pathways contribute to the accurate maintenance of the DNA methylome landscape upon UV exposure
- Recruitment of the Ulp2 protease to the inner kinetochore prevents its hyper-sumoylation to ensure accurate chromosome segregation
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions
- The impact of genetic adaptation on chimpanzee subspecies differentiation
- CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline
- Cardiac Snail family of transcription factors directs systemic lipid metabolism in Drosophila
- Contribution of Common Genetic Variants to Familial Aggregation of Disease and Implications for Sequencing Studies
- Linking high GC content to the repair of double strand breaks in prokaryotic genomes
- East-Asian Helicobacter pylori Strains Synthesize Heptan-deficient Lipopolysaccharide
- SON protects nascent transcripts from unproductive degradation by counteracting DIP1
- Ancestral male recombination in Drosophila albomicans produced geographically restricted neo-Y chromosome haplotypes varying in age and onset of decay
- Correction: Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans
- STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa
- The great hairball gambit
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Současné možnosti léčby obezity
nový kurzAutoři: MUDr. Martin Hrubý
Autoři: prof. MUDr. Hana Rosolová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání