Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp
Autoři:
Jack Hearn aff001; Mark Blaxter aff002; Karsten Schönrogge aff003; José-Luis Nieves-Aldrey aff004; Juli Pujade-Villar aff005; Elisabeth Huguet aff006; Jean-Michel Drezen aff006; Joseph D. Shorthouse aff007; Graham N. Stone aff002
Působiště autorů:
Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
aff001; Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
aff002; Centre for Ecology and Hydrology, Wallingford, United Kingdom
aff003; Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
aff004; Departament de Biologia Animal, Universitat de Barcelona, Spain
aff005; UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
aff006; Department of Biology, Laurentian University, Sudbury, Ontario, Canada
aff007
Vyšlo v časopise:
Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008398
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008398
Souhrn
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction.
Klíčová slova:
Buds – Gene expression – Insects – Invertebrate genomics – Larvae – Transcriptome analysis – Viral gene expression – Oaks
Zdroje
1. Meyer J, Maresquelle HJ. Anatomie des galles. Berlin: Gebrüder Borntraeger; 1983.
2. Rohfritsch O, Shorthouse JD, Braun AC, Kahl G, Schell JS. Insect galls. Academic Press; 1982.
3. Dorchin N, Cramer MD, Hoffmann JH. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha. Ecology. Wiley Online Library; 2006;87: 1781–1791. doi: 10.1890/0012-9658(2006)87[1781:pasaow]2.0.co;2 16922327
4. Larson KC, Whitham TG. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia. Springer; 1991;88: 15–21. doi: 10.1007/BF00328398 28312726
5. Abrahamson WG, McCrea KD. Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia. Springer; 1986;68: 174–180. doi: 10.1007/BF00384784 28310124
6. Oates CN, Denby KJ, Myburg AA, Slippers B, Naidoo S. Insect gallers and their plant hosts: from omics data to systems biology. Int J Mol Sci. Multidisciplinary Digital Publishing Institute; 2016;17: 1891.
7. Poole P, Ramachandran V, Terpolilli J. Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol. Nature Publishing Group; 2018;16: 291. doi: 10.1038/nrmicro.2017.171 29379215
8. Martinson EO, Hackett JD, Machado CA, Arnold AE. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction. PLoS One. 2015;10: e0130745. doi: 10.1371/journal.pone.0130745 26090817
9. Cook JM, Rasplus J-Y. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol. Elsevier; 2003;18: 241–248.
10. Cook JM, West SA. Figs and fig wasps. Curr Biol. Elsevier; 2005;15: R978—R980. doi: 10.1016/j.cub.2005.11.057 16360672
11. Wesemael W, Viaene N, Moens M. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology. Brill; 2011;13: 3–16.
12. Csóka G, Stone GN, Melika G. Non-native gall-inducing insects on forest trees: a global review. Biol Invasions. Springer; 2017;19: 3161–3181.
13. Escobar MA, Dandekar AM. Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci. Elsevier; 2003;8: 380–386. doi: 10.1016/S1360-1385(03)00162-6 12927971
14. Hoffmann JH, Impson FAC, Moran VC, Donnelly D. Biological control of invasive golden wattle trees (Acacia pycnantha) by a gall wasp, Trichilogaster sp.(Hymenoptera: Pteromalidae), in South Africa. Biol Control. Elsevier; 2002;25: 64–73.
15. Story JM, Smith L, Corn JG, White LJ. Influence of seed head-attacking biological control agents on spotted knapweed reproductive potential in western Montana over a 30-year period. Environ Entomol. Oxford University Press Oxford, UK; 2008;37: 510–519.
16. Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. Annu Rev Phytopathol. Annual Reviews; 2019;57: 231–251. doi: 10.1146/annurev-phyto-082718-100101 31226020
17. Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol. Annual Reviews; 2015;31: 201–229. doi: 10.1146/annurev-cellbio-102314-112502 26436707
18. Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol. 2008;26: 909–15. doi: 10.1038/nbt.1482 18660804
19. Mejias J, Truong NM, Abad P, Favery B, Quentin M. Plant proteins and processes targeted by parasitic nematode effectors. Front Plant Sci. Frontiers Media SA; 2019;10.
20. Rehman S, Gupta VK, Goyal AK. Identification and functional analysis of secreted effectors from phytoparasitic nematodes. BMC Microbiol. BioMed Central; 2016;16: 48. doi: 10.1186/s12866-016-0632-8 27001199
21. Stuart JJ, Chen M-S, Shukle R, Harris MO. Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol. 2012;50: 339–57. doi: 10.1146/annurev-phyto-072910-095255 22656645
22. Chen M-S, Fellers JP, Zhu YC, Stuart JJ, Hulbert S, El-Bouhssini M, et al. A super-family of genes coding for secreted salivary gland proteins from the Hessian fly, Mayetiola destructor. J Insect Sci. 2006;6: 12. doi: 10.1673/2006.06.12.1 19537963
23. Zhao C, Shukle R, Navarro-Escalante L, Chen M, Richards S, Stuart JJ. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family. J Insect Physiol. 2016;84: 22–31. doi: 10.1016/j.jinsphys.2015.10.001 26439791
24. Aggarwal R, Subramanyam S, Zhao C, Chen M-S, Harris MO, Stuart JJ. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor). PLoS One. Public Library of Science; 2014;9: e100958. doi: 10.1371/journal.pone.0100958 24964065
25. Schultz JC, Edger PP, Body MJA, Appel HM. A galling insect activates plant reproductive programs during gall development. Sci Rep. 2019;9: 1833. doi: 10.1038/s41598-018-38475-6 30755671
26. Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci. National Acad Sciences; 2013;110: 16663–16668. doi: 10.1073/pnas.1220219110 24067657
27. Raman A, Schaefer CW, Withers TM, others. Biology, ecology, and evolution of gall-inducing arthropods. Boca Raton: CRC Press; 2005.
28. Rohfritsch O. Patterns in gall development. In: Shorthouse JD, Rohfritsch O, editors. Biology of insect-induced galls. Oxford University Press: New York; 1992. pp. 60–86.
29. Stone GN, Schönrogge K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 2003;18: 512–522. doi: 10.1016/S0169-5347(03)00247-7
30. Dawkins R. The Extended Phenotype. Oxford: Oxford University Press; 1989.
31. Crespi B, Worobey M. Comparative Analysis of Gall Morphology in Australian Gall Thrips: The Evolution of Extended Phenotypes. Evolution (N Y). 1998; 1686–1696.
32. Stone GN, Cook JM. The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proc R Soc B Biol Sci. 1998;265. doi: 10.1098/rspb.1998.0387
33. Kutsukake M, Meng X-Y, Katayama N, Nikoh N, Shibao H, Fukatsu T. An insect-induced novel plant phenotype for sustaining social life in a closed system. Nat Commun. Nature Publishing Group; 2012;3: 1187. doi: 10.1038/ncomms2187 23149732
34. Stern DL. Phylogenetic evidence that aphids, rather than plants, determine gall morphology. Proc R Soc London Ser B Biol Sci. The Royal Society London; 1995;260: 85–89.
35. Giron D, Huguet E, Stone GN, Body M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol. 2015;84: 70–89. doi: 10.1016/j.jinsphys.2015.12.009 26723843
36. Tooker JF, Helms AM. Phytohormone Dynamics Associated with Gall Insects, and their Potential Role in the Evolution of the Gall-Inducing Habit. J Chem Ecol. 2014;40: 742–753. doi: 10.1007/s10886-014-0457-6 25027764
37. Csóka G, Stone GN, Melika G. The biology, ecology and evolution of Gall-inducing Cynipidae. In: Raman C, Schaefer W, Withers TM, editors. Biology, ecology and evolution of gall inducing insects. Boca Raton: CRC Press; 2005. pp. 573–642.
38. Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thúroczy C, et al. Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol. 2009;7: e1000179. doi: 10.1371/journal.pbio.1000179 19707266
39. Ronquist F, Liljeblad J. Evolution of the gall wasp—host plant association. Evolution (N Y). 2001;55: 2503–2522.
40. Shorthouse JD, Leggo JJ, Sliva MD, Lalonde RG. Has egg location influenced the radiation of Diplolepis (Hymenoptera: Cynipidae) gall wasps on wild roses? Basic Appl Ecol. 2005;6: 423–434. doi: 10.1016/j.baae.2005.07.006
41. Hough JS. Studies on the common spangle gall of oak. New Phytol. 1953;52: 149–177.
42. Stone GN, Hernandez-Lopez A, Nicholls JA, di Pierro E, Pujade-Villar J, Melika G, et al. Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution (N Y). 2009;63: 854–869.
43. Hough JS. Studies on the common spangle gall of oak: II. A general consideration of past work on gall induction. New Phytol. 1953;52: 218–228.
44. Rey L. La galle de Biorhiza pallida Bosc. Sur la racine de Quercus pedunculata Ehrh.: observation de la ponte et de les premières réactions de l’hôte. Comptes rendus l’Académie des Sci. 1967;264: 2891–2894.
45. Rey L. La galle de Biorhiza pallida Ol. Etude préliminaire du bourgeon de Quercus pedunculata Ehrh. au moment de l’attaque du parasite. Bull la Société Bot Fr. 1966;113: 503–514.
46. Garbin L, Durfort M, Diaz NB, Pujade-Villar J. Histological Modifications on Quercus suber Twigs (Fagaceae) Caused by the Gallwasp Plagiotrochus suberi (Hymenoptera: Cynipidae). Entomol Gen. 2005;28: 91–102.
47. Derory J, Léger P, Garcia V, Schaeffer J, Hauser MT, Salin F, et al. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol. 2006;170: 723–738. doi: 10.1111/j.1469-8137.2006.01721.x 16684234
48. Plomion C, Aury J-M, Amselem J, Leroy T, Murat F, Duplessis S, et al. Oak genome reveals facets of long lifespan. Nat Plants. Nature Publishing Group; 2018;4: 440. doi: 10.1038/s41477-018-0172-3 29915331
49. Cambier S, Ginis O, Moreau SJM, Gayral P, Hearn J, Stone GN, et al. Gall wasp transcriptomes unravel potential effectors involved in molecular dialogues with oak and rose bushes. Front Physiol. 2019;10: 926. doi: 10.3389/fphys.2019.00926 31396099
50. Hearn J, Stone GN, Bunnefeld L, Nicholls JA, Barton NH, Lohse K. Likelihood-based inference of population history from low-coverage de novo genome assemblies. Mol Ecol. 2014;3643: 198–211. doi: 10.1111/mec.12578 24188568
51. Bunnefeld L, Hearn J, Stone GN, Lohse K. Whole-genome data reveal the complex history of a diverse ecological community. Proc Natl Acad Sci. 2018;115: E6507–E6515. doi: 10.1073/pnas.1800334115 29946026
52. Nicholls JA, Melika G, Stone GN. Sweet Tetra-Trophic Interactions: Multiple Evolution of Nectar Secretion, a Defensive Extended Phenotype in Cynipid Gall Wasps. Am Nat. 2017;189: 67–77. doi: 10.1086/689399 28035894
53. Cook JM, Rokas A, Pagel M, Stone GN. Evolutionary shift between host oak section and host-plant organs in Andricus gallwasps. Evolution (N Y). 2002;56: 1821–1830.
54. Ronquist F, Nieves-Aldrey J-L, Buffington ML, Liu Z, Liljeblad J, Nylander JAA. Phylogeny, evolution and classification of gall wasps: the plot thickens. PLoS One. 2015;10: e0123301. doi: 10.1371/journal.pone.0123301 25993346
55. Phylogeny Ronquist F., classification and evolution of the Cynipoidea. Zool Scr. 1999;28: 139–164. doi: 10.1046/j.1463-6409.1999.00022.x
56. Beyerinck MW. Beobachtungen ueber die ersten Entwicklungsphasen einiger Cynipidengallen. Amsterdam: Mueller; 1882;
57. Brooks SE, Shorthouse JD. Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Can J Bot. NRC Research Press; 1998;76: 365–381.
58. Rey L. Particular aspects of the endoplasmic reticulum observed during the evolution of the nutrient cells of the gall caused by Biorhiza pallida [Quercus]. Comptes Rendus Hebd des Seances l’Academie des Sci Ser D. 1975;
59. Harper LJ, Schönrogge K, Lim KY, Francis P, Lichtenstein CP. Cynipid galls: insect-induced modifications of plant development create novel plant organs. Plant Cell Environ. 2004;27: 327–335.
60. Schönrogge K, Harper LJ, Lichtenstein CP. The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): Similarities between cynipid galls and seeds. Plant Cell Environ. 2000;23: 215–222.
61. Atkinson RJ, Brown GS, Stone GN. Skewed sex ratios and multiple founding in galls of the oak apple gall wasp Biorhiza pallida. Ecol Entomol. 2003;28: 14–24.
62. Folliot R. Les insectes cécidogènes et la cécidogenèse. Trait Zool Anat systématique, Biol. 1977;8: 389–429.
63. Bronner R. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O, editors. Biology of insect-induced galls. New York: Oxford University Press; 1992. pp. 118–140.
64. Shorthouse JD, Rohfritsch O. Biology of insect-induced galls. New York, USA: Oxford University Press; 1992.
65. Bagatto G, Paquette LC, Shorthouse JD. Influence of galls of Phanacis taraxaci on carbon partitioning within common dandelion, Taraxacum officinale. Entomol Exp Appl. 1996;79: 111–117.
66. Rey L. La galle de Biorhiza pallida Ol.: stades ultérieurs de développement. Marcellia. 1971;37: 193–218.
67. Sinclair FH, Stone GN, Nicholls JA, Cavers S, Gibbs M, Butterill P, et al. Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management. Evol Appl. Wiley Online Library; 2015;8: 972–987. doi: 10.1111/eva.12329 26640522
68. Hartley SE, Lawton JH. Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol. JSTOR; 1992; 113–119.
69. Allison SD, Schultz JC. Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol. 2005;31: 151–166. 15839487
70. Elborough K, Winz R, Deka R, Markham J, White A, Rawsthorne S, et al. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis. Biochem J. 1996;315: 103–112. doi: 10.1042/bj3150103 8670092
71. Wilhelm E. Somatic embryogenesis in oak (Quercus spp.). Vitr Cell Dev Biol—Plant. 2000;36: 349–357. doi: 10.1007/s11627-000-0062-y
72. Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett. 2010;13: 223–234. doi: 10.1111/j.1461-0248.2009.01416.x 20015249
73. Kaiser W, Huguet E, Casas J, Commin C, Giron D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B Biol Sci. 2010;277: 2311–2319. doi: 10.1098/rspb.2010.0214 20356892
74. Bansal R, Hulbert S, Schemerhorn B, Reese JC, Whitworth RJ, Stuart JJ, et al. Hessian Fly-Associated Bacteria: Transmission, Essentiality, and Composition. PLoS One. 2011;6: e23170. doi: 10.1371/journal.pone.0023170 21858016
75. Joy JB. Symbiosis catalyses niche expansion and diversification. Proc Biol Sci. 2013;280: 20122820. doi: 10.1098/rspb.2012.2820 23390106
76. Nelson LA, Davies KA, Scheffer SJ, Taylor GS, Purcell MF, Giblin-Davis RM, et al. An emerging example of tritrophic coevolution between flies (Diptera: Fergusoninidae) and nematodes (Nematoda: Neotylenchidae) on myrtaceae host plants. Biol J Linn Soc. 2014;111: 699–718. doi: 10.1111/bij.12237
77. Borkent A, Bissett J. Gall midges (Diptera: Cecidomyiidae) are vectors for their fungal symbionts. Symbiosis (USA). 1985;
78. Joy JB. Symbiosis catalyses niche expansion and diversification. Proc R Soc B Biol Sci. 2013;280.
79. Cornell HV. The Secondary Chemistry and Complex Morphology of Galls Formed by the Cynipinae (Hymenoptera): Why and How? Am Midl Nat. 1983;110: 225–234. doi: 10.2307/2425263
80. Bézier A, Annaheim M, Herbinière J, Wetterwald C, Gyapay G, Bernard-Samain S, et al. Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus. Science (80-). 2009;323: 926–930. doi: 10.1126/science.1166788 19213916
81. Drezen J-M, Leobold M, Bezier A, Huguet E, Volkoff A-N, Herniou EA. Endogenous viruses of parasitic wasps: variations on a common theme. Curr Opin Virol. Elsevier; 2017;25: 41–48. doi: 10.1016/j.coviro.2017.07.002 28728099
82. Rizki RM, Rizki TM. Parasitoid virus-like particles destroy Drosophila cellular immunity. Proc Natl Acad Sci. National Acad Sciences; 1990;87: 8388–8392. doi: 10.1073/pnas.87.21.8388 2122461
83. H R. Von welchen Organen der Gallwespenlarve geht der Reiz zur Bildung der Pflanzengalle aus? Zoologischer Jahrbücher. Abteilung für Syst Geogr und Biol der Tiere. 1904;20: 19–90.
84. Roth P. Beiträge zur Biologie der Gallwespen. Verhandlungen der Naturforscher Gesellschaft Basel. 1949;60: 104–178.
85. Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 2012;10: 618–630. doi: 10.1038/nrmicro2852 22890146
86. Nabity PD. Insect-induced plant phenotypes: Revealing mechanisms through comparative genomics of galling insects and their hosts. Am J Bot. 2016;103: 979–981. doi: 10.3732/ajb.1600111 27257007
87. Zhu C, Shi F, Chen Y, Wang M, Zhao Y, Geng G. Transcriptome Analysis of Chinese Chestnut (Castanea mollissima Blume) in Response to Dryocosmus kuriphilus Yasumatsu Infestation. Int J Mol Sci. Multidisciplinary Digital Publishing Institute; 2019;20: 855.
88. Jia XY, He LH, Jing RL, Li RZ. Calreticulin: Conserved protein and diverse functions in plants. Physiol Plant. 2009;136: 127–138. doi: 10.1111/j.1399-3054.2009.1223.x 19453510
89. Zürcher E, Liu J, di Donato M, Geisler M, Müller B. Plant development regulated by cytokinin sinks. Science (80-). 2016;353: 1027–1030. doi: 10.1126/science.aaf7254 27701112
90. Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, et al. Higher Activity of an Aldehyde Oxidase in the Auxin-Overproducing superroot 1 mutant of Arabidopsis thaliana. Plant Physiol. Am Soc Plant Biol; 1998;116: 687–693. doi: 10.1104/pp.116.2.687 9489015
91. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. Elsevier; 2002;110: 513–520. doi: 10.1016/s0092-8674(02)00863-2 12202040
92. Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, Sato S, et al. AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. Plant cell Physiol. Oxford University Press; 2007;48: 375–380. doi: 10.1093/pcp/pcl065 17202180
93. Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci. National Acad Sciences; 2007;104: 20623–20628. doi: 10.1073/pnas.0706547105 18077346
94. Suzuki H, Yokokura J, Ito T, Arai R, Yokoyama C, Toshima H, et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem Mol Biol. 2014;53: 66–72. doi: 10.1016/j.ibmb.2014.07.008 25111299
95. Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science (80-). American Association for the Advancement of Science; 2007;318: 645–648.
96. Field LM, James AA, Plantard O, Rasplus J-Y, Mondor G, Clainche I, et al. Distribution and phylogeny of Wolbachia inducing thelytoky in Rhoditini and Aylacini (Hymenoptera: Cynipidae). Insect Mol Biol. 1999;8: 185–191. 10380102
97. Rokas A, Atkinson RJ, Nieves-Aldrey JL, West SA, Stone GN. The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Mol Ecol. 2002;11: 1815–1829. doi: 10.1046/j.1365-294x.2002.01556.x 12207731
98. Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34: 369–373. doi: 10.1093/nar/gkl198 16845028
99. Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, et al. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem Mol Biol. 2012;42: 525–36. doi: 10.1016/j.ibmb.2012.03.010 22516182
100. Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. BioMed Central Ltd; 2013;14: R27. doi: 10.1186/gb-2013-14-3-r27 23537049
101. Pauchet Y, Heckel DG. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc Biol Sci. 2013;280: 20131021. doi: 10.1098/rspb.2013.1021 23698014
102. Pauchet Y, Wilkinson P, Chauhan R, Ffrench-Constant RH. Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS One. 2010;5: e15635. doi: 10.1371/journal.pone.0015635 21179425
103. De Lorenzo G, Ferrari S, Giovannoni M, Mattei B, Cervone F. Cell wall traits that influence plant development, immunity, and bioconversion. Plant J. Wiley Online Library; 2019;97: 134–147. doi: 10.1111/tpj.14196 30548980
104. Vallarino JG, Osorio S. Signaling role of oligogalacturonides derived during cell wall degradation. Plant Signal Behav. Landes Bioscience; 2012;7: 1447–1449. doi: 10.4161/psb.21779 22918501
105. Pawłowski TA, Staszak AM, Karolewski P, Giertych MJ. Plant development reprogramming by cynipid gall wasp: proteomic analysis. Acta Physiol Plant. Springer; 2017;39: 114.
106. Takei M, Kogure S, Yokoyama C, Kouzuma Y, Suzuki Y. Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland. Biosci Biotechnol Biochem. Taylor & Francis; 2019;83: 129–136. doi: 10.1080/09168451.2018.1525275 30286706
107. Zhao CY, Escalante LN, Chen H, Benatti TR, Qu JX, Chellapilla S, et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr Biol. 2015;25. doi: 10.1016/j.cub.2014.12.057 25660540
108. Abe Y, Ide T, Wachi N. Discovery of a New Gall-Inducing Species in the Inquiline Tribe Synergini (Hymenoptera: Cynipidae): Inconsistent Implications from Biology and Morphology. Ann Entomol Soc Am. 2011;104: 115–120. doi: 10.1603/AN10149
109. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. Oxford University Press; 2005;33: W465—W467. doi: 10.1093/nar/gki458 15980513
110. Volkenburgh E Van. Leaf expansion—an integrating plant behaviour. Plant Cell Environ. Wiley Online Library; 1999;22: 1463–1473.
111. Maksymowych R. Analysis of leaf development. CUP Archive; 1973.
112. Becraft PW. 1 Development of the Leaf Epidermis. Current topics in developmental biology. Elsevier; 1999. pp. 1–40.
113. Botta R, Sartor C, Torello Marinoni D, Quacchia A, Alma A. Differential gene expression in chestnut buds following infestation by gall-wasp (Dryocosmus kuriphilus Yasumatsu, Hymenoptera: Cynipidae). IV International Chestnut Symposium 844. 2008. pp. 405–410.
114. van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 2001;125: 1880–90. doi: 10.1104/pp.125.4.1880 11299367
115. De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, et al. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell. 1992;4: 425–33. doi: 10.1105/tpc.4.4.425 1498601
116. Poon S, Heath RL, Clarke AE. A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol. 2012;160: 684–95. doi: 10.1104/pp.112.203075 22858635
117. Fehér A, Pasternak TP, Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue Organ Cult. 2003;74: 201–228. doi: 10.1023/A:1024033216561
118. Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A, Driouich A. Arabinogalactan proteins in root-microbe interactions. Trends Plant Sci. 2013;18: 440–449. doi: 10.1016/j.tplants.2013.03.006 23623239
119. Van Hengel AJ, Van Kammen A, De Vries SC. A relationship between seed development, Arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant. 2002;114: 637–644. 11975739
120. Costa ML, Sobral R, Costa MMR, Amorim MI, Coimbra S. Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Ann Bot. Annals Botany Co; 2014; mcu223.
121. De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, et al. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell. 1993;5: 615–620. doi: 10.1105/tpc.5.6.615 12271077
122. Röhrig H, Schmidt J, Walden R, Czaja I, Miklaševičs E, Wieneke U, et al. Growth of Tobacco Protoplasts Stimulated by Synthetic Lipo-Chitooligosaccharides. Science (80-). 1995;269: 841–843. doi: 10.1126/science.269.5225.841 17778743
123. Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet. 1998;32: 33–57. doi: 10.1146/annurev.genet.32.1.33 9928474
124. Cannesan M-A, Nguema-Ona E. Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci. 2013;18: 440–449. doi: 10.1016/j.tplants.2013.03.006 23623239
125. Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D. Ethylene in vegetative development: a tale with a riddle. New Phytol. Wiley Online Library; 2012;194: 895–909. doi: 10.1111/j.1469-8137.2012.04100.x 22404712
126. Gresshoff PM, Lohar D, Chan P-K, Biswas B, Jiang Q, Reid D, et al. Genetic analysis of ethylene regulation of legume nodulation. Plant Signal Behav. Taylor & Francis; 2009;4: 818–823. doi: 10.4161/psb.4.9.9395 19847106
127. Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. Springer; 2014;6: 1–18.
128. Volkoff A-N, Jouan V, Urbach S, Samain S, Bergoin M, Wincker P, et al. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 2010;6: e1000923. doi: 10.1371/journal.ppat.1000923 20523890
129. Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol. Public Library of Science; 2015;13: e1002210. doi: 10.1371/journal.pbio.1002210 26172158
130. Quentin M, Abad P, Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci. 2013;4: 53. doi: 10.3389/fpls.2013.00053 23493679
131. Boulain H, Legeai F, Guy E, Morlière S, Douglas NE, Oh J, et al. Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants. Genome Biol Evol. Oxford University Press; 2018;10: 1554–1572. doi: 10.1093/gbe/evy097 29788052
132. Bailey S, Percy DM, Hefer CA, Cronk QCB. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae). BMC Genomics. 2015;16: 943. doi: 10.1186/s12864-015-2109-9 26572921
133. Tanaka Y, Okada K, Asami T, Suzuki Y. Phytohormones in Japanese Mugwort Gall Induction by a Gall-Inducing Gall Midge. Biosci Biotechnol Biochem. 2013;77: 1942–1948. doi: 10.1271/bbb.130406 24018692
134. Takei M, Yoshida S, Kawai T, Hasegawa M, Suzuki Y. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. J Insect Physiol. 2015;72: 43–51. doi: 10.1016/j.jinsphys.2014.11.006 25437243
135. Ohkawa M. Isolation of zeatin from larvae of Dryocosmus kuriphilus Yasumatsu [Castanea crenata, gall initiation]. HortScience (USA). 1974;9: 458–459.
136. Percy DM, Page RDM, Cronk QCB. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Syst Biol. 2004;53: 120–127. doi: 10.1080/10635150490264996 14965907
137. Wood BW, Payne JA. Growth regulators in chestnut shoot galls infected with oriental chestnut gall wasp, Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Environ Entomol. 1988;17: 915–920.
138. Brütting C, Crava CM, Schäfer M, Schuman MC, Meldau S, Adam N, et al. Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects. Elife. eLife Sciences Publications Limited; 2018;7: e36268. doi: 10.7554/eLife.36268 30014847
139. Bartlett L, Connor EF. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 2014;8: 339–348. doi: 10.1007/s11829-014-9309-0
140. John M, Röhrig H, Schmidt J, Walden R, Schell J. Cell signalling by oligosaccharides. Trends Plant Sci. Elsevier; 2015;2: 111–115. doi: 10.1016/S1360-1385(97)01005-4
141. Yue J, Hu X, Huang J. Origin of plant auxin biosynthesis. Trends Plant Sci. Elsevier; 2014;19: 764–770. doi: 10.1016/j.tplants.2014.07.004 25129418
142. Nieminen KM, Kauppinen L, Helariutta Y. A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. Am Soc Plant Biol; 2004;135: 653–659. doi: 10.1104/pp.104.040212 15208411
143. Bar M, Ori N. Leaf development and morphogenesis. Development. 2014;141: 4219–4230. doi: 10.1242/dev.106195 25371359
144. Body MJA, Zinkgraf MS, Whitham TG, Lin C-H, Richardson RA, Appel HM, et al. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid. Mol Plant-Microbe Interact. 2019;32: 654–672. doi: 10.1094/MPMI-11-18-0301-R 30520677
145. Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament SA, Toth AL, et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol. 2006;15: 563–576. doi: 10.1111/j.1365-2583.2006.00677.x 17069632
146. Mckenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species , reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2016; 1–18. doi: 10.1186/s13059-015-0866-z
147. Kirsch R, Gramzow L, Theißen G, Siegfried BD, Richard H, Heckel DG, et al. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol. 2014;52: 33–50. doi: 10.1016/j.ibmb.2014.06.008 24978610
148. Kirsch R, Wielsch N, Vogel H, Svatoš A, Heckel DG, Pauchet Y. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle. BMC Genomics. 2012;13: 587. doi: 10.1186/1471-2164-13-587 23116131
149. Busch A, Danchin EGJ, Pauchet Y. Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytophaga beetles. BMC Evol Biol. 2019;19: 100. doi: 10.1186/s12862-019-1429-9 31077129
150. Brand P, Lin W, Johnson BR. The draft genome of the invasive walking stick, Medauroidea extradendata, reveals extensive Lineage-Specific gene family expansions of Cell wall degrading enzymes in phasmatodea. G3 Genes, Genomes, Genet. 2018;8: 1403–1408.
151. Bronner R. Proprieties lytiques des œufs de Biorrihza pallida. Comptes Rendus l’Académie des Sci. 1973;276: 189–192.
152. Bronner R. Contribution a l’etude histochimique des tissus nourriciers des zoocecidies. Marcellia. 1977;40: 1–134.
153. Rodriguez PA, Stam R, Warbroek T, Bos JIB. Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Mol Plant-Microbe Interact. Am Phytopath Society; 2014;27: 30–39. doi: 10.1094/MPMI-05-13-0156-R 24006884
154. Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R, Escudero-Martinez C, et al. Plant immunity in plant–aphid interactions. Front Plant Sci. 2014;5: 663. doi: 10.3389/fpls.2014.00663 25520727
155. Hogenhout SA, Bos JIB. Effector proteins that modulate plant–insect interactions. Curr Opin Plant Biol. 2011;14: 422–428. doi: 10.1016/j.pbi.2011.05.003 21684190
156. Sanchez F, Padilla J E, Perez H, and Lara M. Control of Nodulin Genes in Root-Nodule Development and Metabolism. Annu Rev Plant Physiol Plant Mol Biol. 1991;42: 507–528. doi: 10.1146/annurev.pp.42.060191.002451
157. Ma Y, Yan C, Li H, Wu W, Liu Y, Wang Y, et al. Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. Front Plant Sci. 2017;8: 66. doi: 10.3389/fpls.2017.00066 28184232
158. Mashiguchi K, Asami T, Suzuki Y. Genome-Wide Identification, Structure and Expression Studies, and Mutant Collection of 22 Early Nodulin-Like Protein Genes in Arabidopsis. Biosci Biotechnol Biochem. 2009;73: 2452–2459. doi: 10.1271/bbb.90407 19897921
159. Redding NW, Agudelo P, Wells CE. Multiple Nodulation Genes Are Up-Regulated During Establishment of Reniform Nematode Feeding Sites in Soybean. Phytopathology. Am Phytopath Society; 2018;108: 275–291. doi: 10.1094/PHYTO-04-17-0154-R 28945515
160. Domon J-M, Neutelings G, Roger D, David A, David H. A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. J Plant Physiol. 2000;156: 33–39.
161. Arakane Y, Muthukrishnan S. Insect chitinase and chitinase-like proteins. Cell Mol Life Sci. 2010;67: 201–216. doi: 10.1007/s00018-009-0161-9 19816755
162. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci U S A. 2008;105: 6650–5. doi: 10.1073/pnas.0800739105 18436642
163. Taper ML, Case TJ. Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia. Springer; 1987;71: 254–261. doi: 10.1007/BF00377292 28312253
164. Taper ML, Zimmerman EM, Case TJ. Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): the importance of the tannin/fungus interaction. Oecologia. Springer; 1986;68: 437–445. doi: 10.1007/BF01036752 28311792
165. Wilson D, Carroll GC. Avoidance of high-endophyte space by gall-forming insects. Ecology. Wiley Online Library; 1997;78: 2153–2163.
166. Wilson D. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines? Oecologia. Springer; 1995;103: 255–260. doi: 10.1007/BF00329088 28306781
167. Tichomiroff A. Chemische Studien über die Entwicklung der Insecteneier. Zeitschrift für Physiol Chemie. 1885;9: 518–532.
168. Furneaux PJS, Mackay AL. The composition, structure and formation of the chorion and the vitelline membrane of the insect egg-shell. The insect integument. Amsterdam: Elsevier; 1976. pp. 157–176.
169. Moreira MF, Dos Santos AS, Marotta HR, Mansur JF, Ramos IB, Machado EA, et al. A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. Insect Biochem Mol Biol. 2007;37: 1249–61. doi: 10.1016/j.ibmb.2007.07.017 17967344
170. Lohse K, Sharanowski B, Nicholls JA, Blaxter M, Stone GN. Developing EPIC markers for chalcidoid Hymenoptera from EST and genomic data. Mol Ecol Resour. 2011;3: 521–529.
171. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. Cold Spring Harbor Laboratory; 2018;34: i884–i890. doi: 10.1093/bioinformatics/bty560 30423086
172. Andrews S. FastQC: A quality control application for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 2010.
173. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech. 2011;29: 644–652.
174. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. Nature Publishing Group; 2017;14: 417–419. doi: 10.1038/nmeth.4197 28263959
175. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. Faculty of 1000 Ltd; 2015;4.
176. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494–1512. doi: 10.1038/nprot.2013.084 23845962
177. Davidson NM, Hawkins ADK, Oshlack A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. BioMed Central; 2017;18: 148. doi: 10.1186/s13059-017-1284-1 28778180
178. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. Oxford University Press; 2018;1: 7.
179. Plomion C, Aury J-M, Amselem J, Alaeitabar T, Barbe V, Belser C, et al. Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour. Wiley Online Library; 2016;16: 254–265. doi: 10.1111/1755-0998.12425 25944057
180. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. Nature Publishing Group; 2015;12: 59. doi: 10.1038/nmeth.3176 25402007
181. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. Oxford University Press; 2012;41: D590—D596. doi: 10.1093/nar/gks1219 23193283
182. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. Oxford University Press; 2015;31: 3210–3212. doi: 10.1093/bioinformatics/btv351 26059717
183. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15: 550. doi: 10.1186/s13059-014-0550-8 25516281
184. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. bioRxiv. Cold Spring Harbor Laboratory; 2018; 303255.
185. Stephens M. False discovery rates: a new deal. Biostatistics. Oxford University Press; 2016;18: 275–294.
186. Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. Available at: https://bioconductor.org/packages/release/bioc/html/topGO.html. 2016. doi: 10.3390/ijms17030353
187. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6: e21800. doi: 10.1371/journal.pone.0021800 21789182
188. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19: 455–77. doi: 10.1089/cmb.2012.0021 22506599
189. Zimin A V, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 2013;29: 2669–77. doi: 10.1093/bioinformatics/btt476 23990416
190. Smit AFA HR& GP. RepeatMasker Open-3.0. 1996–2010.
191. Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Front Genet. Frontiers; 2013;4: 237. doi: 10.3389/fgene.2013.00237 24348509
192. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. BioMed Central; 2015;16: 157. doi: 10.1186/s13059-015-0721-2 26243257
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 11
Nejčtenější v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis