#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mck1 kinase is a new player in the DNA damage checkpoint pathway


Autoři: Nerea Sanvisens Delgado aff001;  David P. Toczyski aff001
Působiště autorů: UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America aff001
Vyšlo v časopise: Mck1 kinase is a new player in the DNA damage checkpoint pathway. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008372
Kategorie: Perspective
doi: https://doi.org/10.1371/journal.pgen.1008372


Zdroje

1. Ciccia A, Elledge SJ. The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell. 2010; doi: 10.1016/j.molcel.2010.09.019 20965415

2. Chen SH, Smolka MB, Zhou H. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J Biol Chem. 2007; doi: 10.1074/jbc.M609322200 17114794

3. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998; doi: 10.1074/jbc.273.10.5858 9488723

4. Ward IM, Chen J. Histone H2AX Is Phosphorylated in an ATR-dependent Manner in Response to Replicational Stress. J Biol Chem. 2001; doi: 10.1074/jbc.C100569200 11673449

5. Ohouo PY, Bastos de Oliveira FM, Almeida BS, Smolka MB. DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to Mediate replication stress response. Mol Cell. 2010; doi: 10.1016/j.molcel.2010.06.019 20670896

6. Cussiol JR, Dibitetto D, Pellicioli A, Smolka MB. Slx4 scaffolding in homologous recombination and checkpoint control: lessons from yeast. Chromosoma. 2017; doi: 10.1007/s00412-016-0600-y 27165041

7. Dibitetto D, Ferrari M, Rawal CC, Balint A, Kim T, Zhang Z et al. Slx4 and Rtt107 control checkpoint signalling and DNA resection at double-strand breaks. Nucleic Acids Res. 2016; doi: 10.1093/nar/gkv1080 26490958

8. Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature. 2010; doi: 10.1038/nature09377 20865002

9. Zegerman P, Diffley JFX. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010; doi: 10.1038/nature09373 20835227

10. Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M et al. Control of the DNA damage checkpoint by Chk1 and Rad53 protein kinases through distinct mechanisms. Science. 1999; doi: 10.1126/science.286.5442.1166 10550056

11. Zhou Z, Elledge SJ. DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell. 1993; doi: 10.1016/0092-8674(93)90321-G

12. Li Xiaoli, Jin Xuejiao, Sharma Sushma, Liu Xiaojing, Zhang Jiaxin, Niu Yanling et al. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats. PLoS Genet. 2019. doi: 10.1371/journal.pgen.1008136 31381575

13. Lee YD, Elledge SJ. Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev. 2006; doi: 10.1101/gad.1380506 16452505

14. Huang M, Zhou Z, Elledge SJ. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell. 1998; doi: 10.1016/S0092-8674(00)81601-3

15. Tsaponina O, Barsoum E, Åström SU, Chabes A. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet. 2011; doi: 10.1371/journal.pgen.1002061 21573136

16. Chabes A, Domkin V, Thelander L. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem. 1999; doi: 10.1074/jbc.274.51.36679 10593972

17. Zhao X, Muller EGD, Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell. 1998; doi: 10.1016/S1097-2765(00)80277-4

18. Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 2001; doi: 10.1093/emboj/20.13.3544 11432841

19. Yao R, Zhang Z, An X, Bucci B, Perlstein DL, Stubbe J, et al. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci. 2003; doi: 10.1073/pnas.1131932100 12732713

20. Lee YD, Wang J, Stubbe JA, Elledge SJ. Dif1 Is a DNA-Damage-Regulated Facilitator of Nuclear Import for Ribonucleotide Reductase. Mol Cell. 2008; doi: 10.1016/j.molcel.2008.08.018 18851834

21. Wu X, Huang M. Dif1 Controls Subcellular Localization of Ribonucleotide Reductase by Mediating Nuclear Import of the R2 Subunit. Mol Cell Biol. 2008; doi: 10.1128/mcb.01388-08 18838542

22. Meurisse J, Bacquin A, Richet N, Charbonnier JB, Ochsenbein F, Peyroche A. Hug1 is an intrinsically disordered protein that inhibits ribonucleotide reductase activity by directly binding Rnr2 subunit. Nucleic Acids Res. 2014; doi: 10.1093/nar/gku1095 25378334

23. Searle JS, Wood MD, Kaur M, Tobin D V., Sanchez Y. Proteins in the Nutrient-Sensing and DNA damage checkpoint pathways cooperate to restrain mitotic progression following DNA damage. PLoS Genet. 2011; doi: 10.1371/journal.pgen.1002176 21779180

24. Edenberg ER, Vashisht AA, Topacio BR, Wohlschlegel JA, Toczyski DP. Hst3 is turned over by a replication stress-responsive SCFCdc4 phospho-degron. Proc Natl Acad Sci. 2014; doi: 10.1073/pnas.1315325111 24715726

25. Al-Zain A, Schroeder L, Sheglov A, Ikui AE. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCF Cdc4 recognition in Saccharomyces cerevisiae. Mol Biol Cell. 2015; doi: 10.1091/mbc.e14-07-1213 25995377

26. Toczyski DP, Galgoczy DJ, Hartwell LH. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell. 1997; doi: 10.1016/S0092-8674(00)80375-X

27. Bonilla CY, Melo JA, Toczyski DP. Colocalization of Sensors Is Sufficient to Activate the DNA Damage Checkpoint in the Absence of Damage. Mol Cell. 2008; doi: 10.1016/j.molcel.2008.03.023 18471973

28. Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: The protein kinase landscape of the DNA damage response. FEBS Letters. 2011; doi: 10.1016/j.febslet.2011.05.013 21570395

29. Greer YE, Gao B, Yang Y, Nussenzweig A, Rubin JS. Lack of casein kinase 1 delta promotes genomic instability—The accumulation of DNA damage and down-regulation of checkpoint kinase 1. PLoS ONE. 2017; doi: 10.1371/journal.pone.0170903 28125685

30. Gregory MA, Qi Y, Hann SR. Phosphorylation by Glycogen Synthase Kinase-3 Controls c-Myc Proteolysis and Subnuclear Localization. J Biol Chem. 2003; doi: 10.1074/jbc.M310722200 14563837

31. Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci. 2004; doi: 10.1073/pnas.0402770101 15150404

32. Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Current Opinion in Cell Biology. 2009; doi: 10.1016/j.ceb.2009.01.018 19230643

33. Picco V, Pagès G. Linking JNK Activity to the DNA Damage Response. Genes and Cancer. 2013; doi: 10.1177/1947601913486347 24349633

34. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science. 2006; doi: 10.1126/science.1121513 16497931

35. Bulavin D V., Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O.Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature. 2001; doi: 10.1038/35075107 11333986

36. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010; doi: 10.1126/science.1192912 20966255

37. Paull TT. Mechanisms of ATM Activation. Annu Rev Biochem. 2015; doi: 10.1146/annurev-biochem-060614-034335 25580527

38. Hilioti Z, Gallagher DA, Low-Nam ST, Ramaswamy P, Gajer P, Kingsbury TJ. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev. 2004; doi: 10.1101/gad.1159204 14701880

39. Brazill DT, Thorner J, Martin GS. Mck1, a member of the glycogen synthase kinase 3 family of protein kinases, is a negative regulator of pyruvate kinase in the yeast Saccharomyces cerevisiae. J Bacteriol. 1997; doi: 10.1128/jb.179.13.4415–4418.1997

40. Griffioen G, Swinnen S, Thevelein JM. Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J Biol Chem. 2003; doi: 10.1074/jbc.M210691200 12704202

41. Neigeborn L, Mitchell AP. The yeast MCK1 gene encodes a protein kinase homolog that activates early meiotic gene expression. Genes Dev. 1991; doi: 10.1101/gad.5.4.533 2010083

42. Schwartz MA, Madhani HD. Principles of MAP Kinase Signaling Specificity in Saccharomyces cerevisiae. Annu Rev Genet. 2004; doi: 10.1146/annurev.genet.39.073003.112634 15568991

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#