Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis
Autoři:
Vaidehi Patel aff001; Katherine A. Black aff002; Kyu Y. Rhee aff002; John D. Helmann aff001
Působiště autorů:
Department of Microbiology, Cornell University, Ithaca, NY, United States of America
aff001; Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
aff002
Vyšlo v časopise:
Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008434
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008434
Souhrn
Phosphohexomutase superfamily enzymes catalyze the reversible intramolecular transfer of a phosphoryl moiety on hexose sugars. Bacillus subtilis phosphoglucomutase PgcA catalyzes the reversible interconversion of glucose 6-phosphate (Glc-6-P) and glucose 1-phosphate (Glc-1-P), a precursor of UDP-glucose (UDP-Glc). B. subtilis phosphoglucosamine mutase (GlmM) is a member of the same enzyme superfamily that converts glucosamine 6-phosphate (GlcN-6-P) to glucosamine 1-phosphate (GlcN-1-P), a precursor of the amino sugar moiety of peptidoglycan. Here, we present evidence that B. subtilis PgcA possesses activity as a phosphoglucosamine mutase that contributes to peptidoglycan biosynthesis. This activity was made genetically apparent by the synthetic lethality of pgcA with glmR, a positive regulator of amino sugar biosynthesis, which can be specifically suppressed by overproduction of GlmM. A gain-of-function mutation in a substrate binding loop (PgcA G47S) increases this secondary activity and suppresses a glmR mutant. Our results demonstrate that bacterial phosphoglucomutases may possess secondary phosphoglucosamine mutase activity, and that this dual activity may provide some level of functional redundancy for the essential peptidoglycan biosynthesis pathway.
Klíčová slova:
Antibiotics – Biosynthesis – DNA replication – Enzymes – Glucose – Peptidoglycans – Sequence alignment – Bacillus subtilis
Zdroje
1. Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiology Reviews. 2008;32(2):149–67. doi: 10.1111/j.1574-6976.2007.00094.x 18194336
2. van der Es D, Hogendorf WFJ, Overkleeft HS, van der Marel GA, Codée JDC. Teichoic acids: synthesis and applications. Chemical Society Reviews. 2017;46(5):1464–82. doi: 10.1039/c6cs00270f 27990523
3. Brown S, Santa Maria JP Jr., Walker S. Wall teichoic acids of gram-positive bacteria. Annual review of microbiology. 2013;67:313–36. doi: 10.1146/annurev-micro-092412-155620 24024634.
4. Percy MG, Gründling A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annual Review of Microbiology. 2014;68(1):81–100. doi: 10.1146/annurev-micro-091213-112949 24819367.
5. Patel V, Wu Q, Chandrangsu P, Helmann JD. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis. PLOS Genetics. 2018;14(9):e1007689. doi: 10.1371/journal.pgen.1007689 30248093
6. Görke B, Foulquier E, Galinier A. YvcK of Bacillus subtilis is required for a normal cell shape and for growth on Krebs cycle intermediates and substrates of the pentose phosphate pathway. Microbiology. 2005;151(11):3777–91. doi: 10.1099/mic.0.28172–0
7. Foulquier E, Galinier A. YvcK, a protein required for cell wall integrity and optimal carbon source utilization, binds uridine diphosphate-sugars. Scientific Reports. 2017;7(1):4139. doi: 10.1038/s41598-017-04064-2 28646159
8. Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J Biol Chem. 2010;285(3):1587–96. doi: 10.1074/jbc.M109.061747 19917605; PubMed Central PMCID: PMC2804316.
9. Mir M, Prisic S, Kang CM, Lun S, Guo H, Murry JP, et al. Mycobacterial gene cuvA is required for optimal nutrient utilization and virulence. Infect Immun. 2014;82(10):4104–17. doi: 10.1128/IAI.02207-14 25047842; PubMed Central PMCID: PMC4187881.
10. Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D. Bacillus subtilis α-Phosphoglucomutase Is Required for Normal Cell Morphology and Biofilm Formation. Applied and Environmental Microbiology. 2005;71(1):39–45. doi: 10.1128/AEM.71.1.39-45.2005 15640167
11. Kawai F, Hara H, Takamatsu H, Watabe K, Matsumoto K. Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst. 2006;81(2):69–76. 16755131.
12. Jorasch P, Wolter FP, Zähringer U, Heinz E. A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Molecular Microbiology. 1998;29(2):419–30. doi: 10.1046/j.1365-2958.1998.00930.x 9720862
13. Pooley HM, Paschoud D, Karamata D. The gtaB Marker in Bacillus subtilis 168 Is Associated with a Deficiency in UDP-glucose Pyrophosphorylase. Microbiology. 1987;133(12):3481–93. doi: 10.1099/00221287-133-12-3481 2846750
14. Allison SE, D'Elia MA, Arar S, Monteiro MA, Brown ED. Studies of the Genetics, Function, and Kinetic Mechanism of TagE, the Wall Teichoic Acid Glycosyltransferase in Bacillus subtilis 168. Journal of Biological Chemistry. 2011;286(27):23708–16. doi: 10.1074/jbc.M111.241265 21558268
15. Gründling A, Schneewind O. Genes Required for Glycolipid Synthesis and Lipoteichoic Acid Anchoring in Staphylococcus aureus. Journal of Bacteriology. 2007;189(6):2521–30. doi: 10.1128/JB.01683-06 17209021
16. Weart RB, Lee AH, Chien A-C, Haeusser DP, Hill NS, Levin PA. A Metabolic Sensor Governing Cell Size in Bacteria. Cell. 2007;130(2):335–47. doi: 10.1016/j.cell.2007.05.043 17662947
17. Matsuoka S, Chiba M, Tanimura Y, Hashimoto M, Hara H, Matsumoto K. Abnormal morphology of Bacillus subtilis ugtP mutant cells lacking glucolipids. Genes Genet Syst. 2011;86(5):295–304. 22362028.
18. Seki T, Furumi T, Hashimoto M, Hara H, Matsuoka S. Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid. Genes Genet Syst. 2019;94(2):71–80. doi: 10.1266/ggs.18-00046 30971625.
19. Shackelford GS, Regni CA, Beamer LJ. Evolutionary trace analysis of the alpha-D-phosphohexomutase superfamily. Protein science: a publication of the Protein Society. 2004;13(8):2130–8. doi: 10.1110/ps.04801104 15238632.
20. Bandini G, Mariño K, Güther MLS, Wernimont AK, Kuettel S, Qiu W, et al. Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted by phosphomannomutase and phospho-N-acetylglucosamine mutase. Molecular microbiology. 2012;85(3):513–34. doi: 10.1111/j.1365-2958.2012.08124.x 22676716.
21. Jolly L, Ferrari P, Blanot D, van Heijenoort J, Fassy F, Mengin-Lecreulx D. Reaction mechanism of phosphoglucosamine mutase from Escherichia coli. European Journal of Biochemistry. 1999;262(1):202–10. doi: 10.1046/j.1432-1327.1999.00373.x 10231382
22. Stiers KM, Muenks AG, Beamer LJ. Biology, Mechanism, and Structure of Enzymes in the alpha-d-Phosphohexomutase Superfamily. Adv Protein Chem Struct Biol. 2017;109:265–304. doi: 10.1016/bs.apcsb.2017.04.005 28683921; PubMed Central PMCID: PMC5802415.
23. Stiers KM, Beamer LJ. Assessment and Impacts of Phosphorylation on Protein Flexibility of the alpha-d-Phosphohexomutases. Methods Enzymol. 2018;607:241–67. doi: 10.1016/bs.mie.2018.04.003 30149860.
24. Regni C, Naught L, Tipton PA, Beamer LJ. Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa. Structure. 2004;12(1):55–63. doi: 10.1016/j.str.2003.11.015 14725765.
25. Mehra-Chaudhary R, Mick J, Beamer LJ. Crystal structure of Bacillus anthracis phosphoglucosamine mutase, an enzyme in the peptidoglycan biosynthetic pathway. J Bacteriol. 2011;193(16):4081–7. doi: 10.1128/JB.00418-11 21685296; PubMed Central PMCID: PMC3147701.
26. Mehra-Chaudhary R, Mick J, Tanner JJ, Henzl MT, Beamer LJ. Crystal structure of a bacterial phosphoglucomutase, an enzyme involved in the virulence of multiple human pathogens. Proteins. 2011;79(4):1215–29. doi: 10.1002/prot.22957 21246636; PubMed Central PMCID: PMC3066478.
27. Baptista C, Santos MA, São-José C. Phage SPP1 Reversible Adsorption to Bacillus subtilis Cell Wall Teichoic Acids Accelerates Virus Recognition of Membrane Receptor YueB. Journal of Bacteriology. 2008;190(14):4989–96. doi: 10.1128/JB.00349-08 18487323
28. Habusha M, Tzipilevich E, Fiyaksel O, Ben-Yehuda S. A mutant bacteriophage evolved to infect resistant bacteria gained a broader host range. Molecular Microbiology. 2019;111(6):1463–1475 doi: 10.1111/mmi.14231 30811056.
29. Yasbin RE, Maino VC, Young FE. Bacteriophage resistance in Bacillus subtilis 168, W23, and interstrain transformants. Journal of Bacteriology. 1976;125(3):1120–6. 815237
30. Foulquier E, Pompeo F, Freton C, Cordier B, Grangeasse C, Galinier A. PrkC-mediated phosphorylation of overexpressed YvcK protein regulates PBP1 protein localization in Bacillus subtilis mreB mutant cells. J Biol Chem. 2014;289(34):23662–9. doi: 10.1074/jbc.M114.562496 25012659; PubMed Central PMCID: PMC4156092.
31. Mengin-Lecreulx D, van Heijenoort J. Characterization of the Essential Gene glmM Encoding Phosphoglucosamine Mutase in Escherichia coli. Journal of Biological Chemistry. 1996;271(1):32–9. doi: 10.1074/jbc.271.1.32 8550580
32. Mohammadi T, Karczmarek A, Crouvoisier M, Bouhss A, Mengin-Lecreulx D, den Blaauwen T. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Molecular Microbiology. 2007;65(4):1106–21. doi: 10.1111/j.1365-2958.2007.05851.x PMC2170320. 17640276
33. Gundlach J, Mehne FMP, Herzberg C, Kampf J, Valerius O, Kaever V, et al. An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. Journal of Bacteriology. 2015;197(20):3265–74. doi: 10.1128/JB.00564-15 26240071
34. Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stülke J. A Delicate Connection: c-di-AMP Affects Cell Integrity by Controlling Osmolyte Transport. Trends in Microbiology. 2018;26(3):175–85. doi: 10.1016/j.tim.2017.09.003 28965724
35. Tosi T, Hoshiga F, Millership C, Singh R, Eldrid C, Patin D, et al. Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM. PLoS Pathog. 2019;15(1):e1007537. doi: 10.1371/journal.ppat.1007537 30668586; PubMed Central PMCID: PMC6368335.
36. Zhu Y, Pham TH, Nhiep TH, Vu NM, Marcellin E, Chakrabortti A, et al. Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Mol Microbiol. 2016;99(6):1015–27. doi: 10.1111/mmi.13281 26585449.
37. Gundlach J, Mehne FM, Herzberg C, Kampf J, Valerius O, Kaever V, et al. An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. J Bacteriol. 2015;197(20):3265–74. doi: 10.1128/JB.00564-15 26240071; PubMed Central PMCID: PMC4573722.
38. Quisel JD, Burkholder WF, Grossman AD. In Vivo Effects of Sporulation Kinases on Mutant Spo0A Proteins in Bacillus subtilis. Journal of Bacteriology. 2001;183(22):6573–8. doi: 10.1128/JB.183.22.6573-6578.2001 11673427
39. Altenbuchner J. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Applied and Environmental Microbiology. 2016;82(17):5421–7. doi: 10.1128/AEM.01453-16 27342565
40. Koo B-M, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, et al. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Systems. 2017;4(3):291–305.e7. doi: 10.1016/j.cels.2016.12.013 28189581
41. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363(6433):1345–9. doi: 10.1126/science.aat8515 30898933; PubMed Central PMCID: PMC6487857.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 10
Nejčtenější v tomto čísle
- Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato
- Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression
- TSEN54 missense variant in Standard Schnauzers with leukodystrophy
- Viral quasispecies