Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration
Autoři:
Shella Gilbert-Girard aff001; Annie Gravel aff001; Vanessa Collin aff001; Darren J. Wight aff002; Benedikt B. Kaufer aff002; Eros Lazzerini-Denchi aff003; Louis Flamand aff001
Působiště autorů:
Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
aff001; Institut für Virologie, Freie Universität Berlin, Berlin, Germany
aff002; Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
aff003; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
aff004
Vyšlo v časopise:
Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 16(4): e32767. doi:10.1371/journal.ppat.1008496
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008496
Souhrn
Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p<0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p<0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.
Klíčová slova:
Cell hybridization – DNA replication – DNA-binding proteins – Genomic signal processing – Probe hybridization – Repeated sequences – Telomeres – Viral replication
Zdroje
1. Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D, et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol. 2014;159(5):863–70. doi: 10.1007/s00705-013-1902-5 24193951; PubMed Central PMCID: PMC4750402.
2. Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T, Asano Y, et al. Identification of human herpesvirus-6 as a causal agent for exanthem subitum [see comments]. Lancet. 1988;1(8594):1065–7. doi: 10.1016/s0140-6736(88)91893-4 2896909
3. Phan TL, Carlin K, Ljungman P, Politikos I, Boussiotis V, Boeckh M, et al. Human Herpesvirus-6B Reactivation Is a Risk Factor for Grades II to IV Acute Graft-versus-Host Disease after Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Biol Blood Marrow Transplant. 2018. doi: 10.1016/j.bbmt.2018.04.021 29684567.
4. Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol. 1999;73(10):8040–52. 10482553
5. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, et al. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology. 1995;209(1):29–51. Epub 1995/05/10. S0042-6822(85)71228-7 [pii] doi: 10.1006/viro.1995.1228 7747482.
6. Wallaschek N, Sanyal A, Pirzer F, Gravel A, Mori Y, Flamand L, et al. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog. 2016;12(5):e1005666. doi: 10.1371/journal.ppat.1005666 27244446; PubMed Central PMCID: PMC4887096.
7. Collin V, Flamand L. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B. doi: 10.3390/v9070160 28672870. 2017;9(7). PubMed Central PMCID: PMC5537652.
8. Kaufer BB, Flamand L. Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Current opinion in virology. 2014;9C:111–8. doi: 10.1016/j.coviro.2014.09.010 25462442.
9. Achour A, Malet I, Deback C, Bonnafous P, Boutolleau D, Gautheret-Dejean A, et al. Length variability of telomeric repeat sequences of human herpesvirus 6 DNA. J Virol Methods. 2009;159(1):127–30. Epub 2009/05/16. S0166-0934(09)00104-9 [pii] doi: 10.1016/j.jviromet.2009.03.002 19442857.
10. Gompels UA, Macaulay HA. Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol. 1995;76(Pt 2):451–8.
11. Kishi M, Harada H, Takahashi M, Tanaka A, Hayashi M, Nonoyama M, et al. A repeat sequence, GGGTTA, is shared by DNA of human herpesvirus 6 and Marek's disease virus. J Virol. 1988;62(12):4824–7. Epub 1988/12/01. 2846894.
12. Thomson BJ, Dewhurst S, Gray D. Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol. 1994;68(5):3007–14. Epub 1994/05/01. 8151770.
13. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107(12):5563–8. doi: 10.1073/pnas.0913586107 20212114; PubMed Central PMCID: PMC2851814.
14. Daibata M, Taguchi T, Taguchi H, Miyoshi I. Integration of human herpesvirus 6 in a Burkitt's lymphoma cell line. Br J Haematol. 1998;102(5):1307–13. Epub 1998/09/30. doi: 10.1046/j.1365-2141.1998.00903.x 9753061.
15. Nacheva EP, Ward KN, Brazma D, Virgili A, Howard J, Leong HN, et al. Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J Med Virol. 2008;80(11):1952–8. Epub 2008/09/25. doi: 10.1002/jmv.21299 18814270.
16. Torelli G, Barozzi P, Marasca R, Cocconcelli P, Merelli E, Ceccherini-Nelli L, et al. Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J Med Virol. 1995;46(3):178–88. Epub 1995/07/01. doi: 10.1002/jmv.1890460303 7561787.
17. Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, Descamps V, et al. Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol. 2012;22(3):144–55. Epub 2011/11/05. doi: 10.1002/rmv.715 22052666; PubMed Central PMCID: PMC3498727.
18. Gravel A, Dubuc I, Wallaschek N, Gilbert-Girard S, Collin V, Hall-Sedlak R, et al. Cell culture systems to study Human Herpesvirus 6A/B Chromosomal Integration. J Virol. 2017:pii: JVI.00437-17. doi: 10.1128/JVI.00437-17 28468878.
19. Peddu V, Dubuc I, Gravel A, Xie H, Huang ML, Tenenbaum D, et al. Inherited chromosomally integrated HHV-6 demonstrates tissue-specific RNA expression in vivo that correlates with increased antibody immune response. J Virol. 2019. Epub 2019/10/11. doi: 10.1128/JVI.01418-19 31597766.
20. Gravel A, Dubuc I, Morissette G, Sedlak RH, Jerome KR, Flamand L. Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci U S A. 2015;112(26):8058–63. doi: 10.1073/pnas.1502741112 26080419; PubMed Central PMCID: PMC4491735.
21. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997;11(21):2801–9. doi: 10.1101/gad.11.21.2801 9353250; PubMed Central PMCID: PMC316649.
22. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181–90. doi: 10.1016/0022-5193(73)90198-7 4754905.
23. de Lange T. How telomeres solve the end-protection problem. Science. 2009;326(5955):948–52. doi: 10.1126/science.1170633 19965504; PubMed Central PMCID: PMC2819049.
24. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, et al. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev. 2016;25:55–69. doi: 10.1016/j.arr.2015.11.006 26616852.
25. Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E. Telomeric localization of TRF2, a novel human telobox protein. Nat Genet. 1997;17(2):236–9. doi: 10.1038/ng1097-236 9326951.
26. Broccoli D, Smogorzewska A, Chong L, de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 doi: 10.1038/ng1097-231 9326950 TRF2. Nat Genet. 1997;17(2):231–5.
27. Zhong Z, Shiue L, Kaplan S, de Lange T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol. 1992;12(11):4834–43. doi: 10.1128/mcb.12.11.4834 1406665; PubMed Central PMCID: PMC360416.
28. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–14. Epub 1999/05/25. doi: 10.1016/s0092-8674(00)80760-6 10338214.
29. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 1999;283(5406):1321–5. doi: 10.1126/science.283.5406.1321 10037601.
30. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448(7157):1068–71. doi: 10.1038/nature06065 17687332.
31. Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell. 2004;119(3):355–68. doi: 10.1016/j.cell.2004.10.011 15507207.
32. Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292(5519):1171–5. doi: 10.1126/science.1060036 11349150.
33. Lei M, Podell ER, Cech TR. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol. 2004;11(12):1223–9. doi: 10.1038/nsmb867 15558049.
34. Loayza D, Parsons H, Donigian J, Hoke K, de Lange T. DNA binding features of human POT1: a nonamer 5'-TAGGGTTAG-3' minimal binding site, sequence specificity, and internal binding to multimeric sites. J Biol Chem. 2004;279(13):13241–8. doi: 10.1074/jbc.M312309200 14715659.
35. Deng Z, Kim ET, Vladimirova O, Dheekollu J, Wang Z, Newhart A, et al. HSV-1 remodels host telomeres to facilitate viral replication. Cell Rep. 2014;9(6):2263–78. doi: 10.1016/j.celrep.2014.11.019 25497088; PubMed Central PMCID: PMC4356630.
36. Knecht H, Mai S. LMP1 and Dynamic Progressive Telomere Dysfunction: A Major Culprit in EBV-Associated Hodgkin's Lymphoma. Viruses. 2017;9(7). doi: 10.3390/v9070164 28654015; PubMed Central PMCID: PMC5537656.
37. Lajoie V, Lemieux B, Sawan B, Lichtensztejn D, Lichtensztejn Z, Wellinger R, et al. LMP1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood. 2015;125(13):2101–10. doi: 10.1182/blood-2014-08-594176 25568351; PubMed Central PMCID: PMC4424269.
38. Gravel A, Gosselin J, Flamand L. Human Herpesvirus 6 immediate-early 1 protein is a sumoylated nuclear phosphoprotein colocalizing with promyelocytic leukemia protein-associated nuclear bodies. J Biol Chem. 2002;277(22):19679–87. doi: 10.1074/jbc.M200836200 11901159.
39. Tomoiu A, Gravel A, Flamand L. Mapping of human herpesvirus 6 immediate-early 2 protein transactivation domains. Virology. 2006;354(1):91–102. doi: 10.1016/j.virol.2006.06.030 16884756.
40. Zimmermann M, Kibe T, Kabir S, de Lange T. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev. 2014;28(22):2477–91. Epub 2014/10/26. doi: 10.1101/gad.251611.114 25344324; PubMed Central PMCID: PMC4233241.
41. Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 2002;21(16):4338–48. Epub 2002/08/10. doi: 10.1093/emboj/cdf433 12169636; PubMed Central PMCID: PMC126171.
42. Hanish JP, Yanowitz JL, de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A. 1994;91(19):8861–5. Epub 1994/09/13. doi: 10.1073/pnas.91.19.8861 8090736; PubMed Central PMCID: PMC44706.
43. Cesare AJ, Hayashi MT, Crabbe L, Karlseder J. The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol Cell. 2013;51(2):141–55. Epub 2013/07/16. doi: 10.1016/j.molcel.2013.06.006 23850488; PubMed Central PMCID: PMC3721072.
44. Wiederschain D, Wee S, Chen L, Loo A, Yang G, Huang A, et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle. 2009;8(3):498–504. Epub 2009/01/30. doi: 10.4161/cc.8.3.7701 19177017.
45. Li JS, Miralles Fuste J, Simavorian T, Bartocci C, Tsai J, Karlseder J, et al. TZAP: A telomere-associated protein involved in telomere length control. Science. 2017;355(6325):638–41. doi: 10.1126/science.aah6752 28082411; PubMed Central PMCID: PMC5518674.
46. Arsenault S, Gravel A, Gosselin J, Flamand L. Generation and characterization of a monoclonal antibody specific for human herpesvirus 6 variant A immediate-early 2 protein. J Clin Virol. 2003;28(3):284–90. doi: 10.1016/s1386-6532(03)00050-7 14522067.
47. Trempe F, Gravel A, Dubuc I, Wallaschek N, Collin V, Gilbert-Girard S, et al. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res. 2015;43(12):6084–98. doi: 10.1093/nar/gkv503 25999342; PubMed Central PMCID: PMC4499131.
48. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10. doi: 10.1021/ac202028g 22035192; PubMed Central PMCID: PMC3216358.
49. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10(10):1003–5. doi: 10.1038/nmeth.2633 23995387; PubMed Central PMCID: PMC4118677.
50. Gravel A, Tomoiu A, Cloutier N, Gosselin J, Flamand L. Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology. 2003;308(2):340–53. doi: 10.1016/s0042-6822(03)00007-2 12706083.
51. Tomoiu A, Flamand L. Epitope Mapping of a Monoclonal Antibody Specific for Human Herpesvirus 6 Variant A Immediate-Early 2 Protein. J Clin Virology. 2007;38:286–91.
52. Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972;239(94):197–201. Epub 1972/10/18. doi: 10.1038/newbio239197a0 4507727.
53. Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989;337(6205):331–7. Epub 1989/01/26. doi: 10.1038/337331a0 2463488.
54. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14(17):4240–8. 7556065; PubMed Central PMCID: PMC394507.
55. Deng Z, Atanasiu C, Burg JS, Broccoli D, Lieberman PM. Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol. 2003;77(22):11992–2001. Epub 2003/10/29. doi: 10.1128/JVI.77.22.11992-12001.2003 14581536; PubMed Central PMCID: PMC254251.
56. Atanasiu C, Deng Z, Wiedmer A, Norseen J, Lieberman PM. ORC binding to TRF2 stimulates OriP replication. EMBO Rep. 2006;7(7):716–21. Epub 2006/06/27. doi: 10.1038/sj.embor.7400730 16799465; PubMed Central PMCID: PMC1500828.
57. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell. 2009;139(7):1243–54. Epub 2010/01/13. doi: 10.1016/j.cell.2009.12.017 20064371; PubMed Central PMCID: PMC2824905.
58. Nishimura M, Wang J, Wakata A, Sakamoto K, Mori Y. Crystal Structure of the DNA-Binding Domain of Human Herpesvirus 6A Immediate Early Protein 2. J Virol. 2017;91(21). Epub 2017/08/11. doi: 10.1128/JVI.01121-17 28794035; PubMed Central PMCID: PMC5640841.
59. Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The 2.2 A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol. 1998;284(5):1273–8. Epub 1999/01/08. doi: 10.1006/jmbi.1998.2247 9878348.
60. Hellert J, Weidner-Glunde M, Krausze J, Lunsdorf H, Ritter C, Schulz TF, et al. The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA. Proc Natl Acad Sci U S A. 2015;112(21):6694–9. Epub 2015/05/08. doi: 10.1073/pnas.1421804112 25947153; PubMed Central PMCID: PMC4450395.
61. Tomoiu A, Gravel A, Tanguay RM, Flamand L. Functional interaction between human herpesvirus 6 immediate-early 2 protein and ubiquitin-conjugating enzyme 9 in the absence of sumoylation. J Virol. 2006;80(20):10218–28. doi: 10.1128/JVI.00375-06 17005699.
62. Her J, Jeong YY, Chung IK. PIAS1-mediated sumoylation promotes STUbL-dependent proteasomal degradation of the human telomeric protein TRF2. FEBS Lett. 2015;589(21):3277–86. Epub 2015/10/10. doi: 10.1016/j.febslet.2015.09.030 26450775.
63. Weitzman MD, Lilley CE, Chaurushiya MS. Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol. 2010;64:61–81. Epub 2010/08/10. doi: 10.1146/annurev.micro.112408.134016 20690823.
64. Kudoh A, Iwahori S, Sato Y, Nakayama S, Isomura H, Murata T, et al. Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol. 2009;83(13):6641–51. Epub 2009/04/24. doi: 10.1128/JVI.00049-09 19386720; PubMed Central PMCID: PMC2698542.
65. Daya S, Cortez N, Berns KI. Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol. 2009;83(22):11655–64. Epub 2009/09/18. doi: 10.1128/JVI.01040-09 19759155; PubMed Central PMCID: PMC2772704.
66. Arbuckle JH, Pantry SN, Medveczky MM, Prichett J, Loomis KS, Ablashi D, et al. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology. 2013;442(1):3–11. doi: 10.1016/j.virol.2013.03.030 23648233; PubMed Central PMCID: PMC3696530.
67. Huang Y, Hidalgo-Bravo A, Zhang E, Cotton VE, Mendez-Bermudez A, Wig G, et al. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res. 2014;42(1):315–27. doi: 10.1093/nar/gkt840 24057213; PubMed Central PMCID: PMC3874159.
68. Ohye T, Inagaki H, Ihira M, Higashimoto Y, Kato K, Oikawa J, et al. Dual roles for the telomeric repeats in chromosomally integrated human herpesvirus-6. Scientific reports. 2014;4:4559. doi: 10.1038/srep04559 24691081; PubMed Central PMCID: PMC3972506.
69. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003;13(17):1549–56. Epub 2003/09/06. doi: 10.1016/s0960-9822(03)00542-6 12956959.
70. Kong X, Cruz GMS, Trinh SL, Zhu XD, Berns MW, Yokomori K. Biphasic recruitment of TRF2 to DNA damage sites promotes non-sister chromatid homologous recombination repair. J Cell Sci. 2018;131(23). Epub 2018/11/09. doi: 10.1242/jcs.219311 30404833.
71. Mao Z, Seluanov A, Jiang Y, Gorbunova V. TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A. 2007;104(32):13068–73. Epub 2007/08/03. doi: 10.1073/pnas.0702410104 17670947; PubMed Central PMCID: PMC1941808.
72. Chen Y, Yang Y, van Overbeek M, Donigian JR, Baciu P, de Lange T, et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science. 2008;319(5866):1092–6. Epub 2008/01/19. doi: 10.1126/science.1151804 18202258.
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 4
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
Nejčtenější v tomto čísle
- Battling brain-eating amoeba: Enigmas surrounding immunity to Naegleria fowleri
- Genetic interaction analysis comes to the diploid human pathogen Candida albicans
- Human cytomegalovirus IE2 drives transcription initiation from a select subset of late infection viral promoters by host RNA polymerase II
- Drosophila as a model for the gut microbiome