#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Drosophila as a model for the gut microbiome


Autoři: William B. Ludington aff001;  William W. Ja aff003
Působiště autorů: Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America aff001;  Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America aff002;  Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America aff003;  Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America aff004
Vyšlo v časopise: Drosophila as a model for the gut microbiome. PLoS Pathog 16(4): e1008398. doi:10.1371/journal.ppat.1008398
Kategorie: Pearls
doi: https://doi.org/10.1371/journal.ppat.1008398


Zdroje

1. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nature Medicine. 2018;24(4):392–400. doi: 10.1038/nm.4517 29634682

2. Cho I, Blaser MJ. Applications of Next-Generation Sequencing: The human microbiome: at the interface of health and disease. Nature Reviews Genetics. 2012;13(4):260–70. doi: 10.1038/nrg3182 22411464

3. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533 27541692

4. Koyle ML, Veloz M, Judd AM, Wong AC-N, Newell PD, Douglas AE, et al. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. Journal of visualized experiments: JoVE. 2016;(113). doi: 10.3791/54219 27500374

5. Douglas AE. Simple animal models for microbiome research. Nature Reviews Microbiology. 2019:1–12. doi: 10.1038/s41579-018-0127-8

6. Steinfeld HM. Length of life of Drosophila melanogaster under aseptic conditions. Dissertation thesis. University of California, Berkeley. 1927:1–23.

7. Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 2012;3(4):307–21. doi: 10.4161/gmic.19896 22572876

8. Leulier F, MacNeil LT, Lee W-J, Rawls JF, Cani PD, Schwarzer M, et al. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism. 2017;25(3):522–34. doi: 10.1016/j.cmet.2017.02.001 28273475

9. Kim S-H, Lee W-J. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Frontiers in Cellular and Infection Microbiology. 2014;3:116. doi: 10.3389/fcimb.2013.00116 24455491

10. Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics. 2018;210(2):357–96. doi: 10.1534/genetics.118.300224 30287514

11. Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nature Reviews Microbiology. 2013;11(9):615–26. doi: 10.1038/nrmicro3074 23893105

12. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through TOR-Dependent Nutrient Sensing. Cell Metabolism. 2011;14(3):403–14. doi: 10.1016/j.cmet.2011.07.012 21907145

13. Fischer C, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife. 2017;6. doi: 10.7554/eLife.18855 28068220

14. Blundon MA, Park A, Keith S, Oliver SL, Eutsey RA, Pyzel AM, et al. Microbiota-dependent elevation of Alcohol Dehydrogenase in Drosophila is associated with changes in alcohol-induced hyperactivity and alcohol preference. doi: 10.1101/444471

15. Lee H-Y, Lee S-H, Lee J-H, Lee W-J, Min K-J. The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging. 2019;11. doi: 10.18632/aging.102073 31299010

16. Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, et al. Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila. CHOM. 2015;18(5):571–81. doi: 10.1016/j.chom.2015.10.010 26567510

17. Keebaugh ES, Yamada R, Ja WW. The Nutritional Environment Influences the Impact of Microbes on Drosophila melanogasterLife Span. mBio. 2019;10(4):670–6. doi: 10.1128/mBio.00885-19 31289176

18. Keebaugh ES, Yamada R, Obadia B, Ludington WB, Ja WW. Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. iScience. 2018;4:247–59. doi: 10.1016/j.isci.2018.06.004 30240744

19. Bing X, Gerlach J, Loeb G, Buchon N. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development mBio. 2018;9(2):e02199–17. doi: 10.1128/mBio.02199-17 29559576

20. Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N. The Drosophila melanogaster Gut Microbiota Provisions Thiamine to Its Host. mBio. 2018;9(2). doi: 10.1128/mBio.00155-18 29511074

21. Wong AC-N, Chaston JM, Douglas AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. The ISME Journal. 2013;7(10):1922–32. doi: 10.1038/ismej.2013.86 23719154

22. Blum JE, Fischer CN, Miles J, Handelsman J. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster. mBio. 2013;4(6):e00860-13–e-13. doi: 10.1128/mBio.00860-13 24194543

23. Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 2018;16(7):e2005710. doi: 10.1371/journal.pbio.2005710 29975680

24. Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, et al. Probabilistic Invasion Underlies Natural Gut Microbiome Stability. Current biology. 2017;27(13):1999–2006.e8. doi: 10.1016/j.cub.2017.05.034 28625783

25. Wong AC-N, Luo Y, Jing X, Franzenburg S, Bost A, Douglas AE. The Host as the Driver of the Microbiota in the Gut and External Environment of Drosophila melanogaster. Applied and Environmental Microbiology. 2015;81(18):6232–40. doi: 10.1128/AEM.01442-15 26150460

26. Shibata T, Maki K, Hadano J, Fujikawa T, Kitazaki K, Koshiba T, et al. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. PLoS Pathog. 2015;11(10):e1005244. doi: 10.1371/journal.ppat.1005244 26506243

27. Li H, Qi Y, Jasper H. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. CHOM. 2016;19(2):240–53. doi: 10.1016/j.chom.2016.01.008 26867182

28. Winans NJ, Walter A, Chouaia B, Chaston JM, Douglas AE, Newell PD. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria. Molecular Ecology. 2017. doi: 10.1111/mec.14232 28667798

29. Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, et al. Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum. Cell Metabolism. 2017:1–25. doi: 10.1016/j.cmet.2017.11.011 29290388

30. Wong AC-N, Wang Q-P, Morimoto J, Senior AM, Lihoreau M, Neely GG, et al. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Current biology. 2017:1–13. doi: 10.1016/j.cub.2017.07.022 28756953

31. Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 2017;15(4):e2000862. doi: 10.1371/journal.pbio.2000862 28441450

32. Inamine H, Ellner SP, Newell PD, Luo Y, Buchon N, Douglas AE. Spatiotemporally Heterogeneous Population Dynamics of Gut Bacteria Inferred from Fecal Time Series Data. mBio. 2018:1–17. doi: 10.1128/mBio.01453-17 29317508

33. Newell PD, Douglas AE. Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster. Applied and Environmental Microbiology. 2013;80(2):788–96. doi: 10.1128/AEM.02742-13 24242251

34. Sommer AJ, Newell PD. Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Drosophila melanogaster Host. Applied and Environmental Microbiology. 2019;85(2). doi: 10.1128/AEM.01882-18 30389767

35. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proceedings of the National Academy of Sciences. 2018;6:201809349. doi: 10.1073/pnas.1809349115 30510004

36. Eble H, Joswig M, Lamberti L, Ludington WB. Cluster partitions and fitness landscapes of the Drosophila fly microbiome. Journal of mathematical biology. 2019;79:861–99. doi: 10.1007/s00285-019-01381-0 31101975

37. Fast D, Kostiuk B, Foley E, Pukatzki S. Commensal pathogen competition impacts host viability. Proceedings of the National Academy of Sciences. 2018;3:201802165. doi: 10.1371/journal.ppat.1000582


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#