Projected impact of a reduction in sugar-sweetened beverage consumption on diabetes and cardiovascular disease in Argentina: A modeling study
Autoři:
M. Victoria Salgado aff001; Joanne Penko aff002; Alicia Fernandez aff004; Jonatan Konfino aff001; Pamela G. Coxson aff002; Kirsten Bibbins-Domingo aff002; Raul Mejia aff001
Působiště autorů:
Centro de Estudios de Estado y Sociedad (CEDES), Ciudad de Buenos Aires, Argentina
aff001; Center for Vulnerable Populations, University of California San Francisco, San Francisco, California, United States of America
aff002; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
aff003; Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
aff004
Vyšlo v časopise:
Projected impact of a reduction in sugar-sweetened beverage consumption on diabetes and cardiovascular disease in Argentina: A modeling study. PLoS Med 17(7): e32767. doi:10.1371/journal.pmed.1003224
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003224
Souhrn
Background
Sugar-sweetened beverage (SSB) consumption is associated with obesity, diabetes, and hypertension. Argentina is one of the major consumers of SSBs per capita worldwide. Determining the impact of SSB reduction on health will inform policy debates.
Methods and findings
We used the Cardiovascular Disease Policy Model-Argentina (CVD Policy Model-Argentina), a local adaptation of a well-established computer simulation model that projects cardiovascular and mortality events for the population 35–94 years old, to estimate the impact of reducing SSB consumption on diabetes incidence, cardiovascular events, and mortality in Argentina during the period 2015–2024, using local demographic and consumption data. Given uncertainty regarding the exact amount of SSBs consumed by different age groups, we modeled 2 estimates of baseline consumption (low and high) under 2 different scenarios: a 10% and a 20% decrease in SSB consumption. We also included a range of caloric compensation in the model (0%, 39%, and 100%). We used Monte Carlo simulations to generate 95% uncertainty intervals (UIs) around our primary outcome measures for each intervention scenario. Over the 2015–2024 period, a 10% reduction in SSBs with a caloric compensation of 39% is projected to reduce incident diabetes cases by 13,300 (95% UI 10,800–15,600 [low SSB consumption estimate]) to 27,700 cases (95% UI 22,400–32,400 [high SSB consumption estimate]), i.e., 1.7% and 3.6% fewer cases, respectively, compared to a scenario of no change in SSB consumption. It would also reduce myocardial infarctions by 2,500 (95% UI 2,200–2,800) to 5,100 (95% UI 4,500–5,700) events and all-cause deaths by 2,700 (95% UI 2,200–3,200) to 5,600 (95% UI 4,600–6,600) for “low” and “high” estimates of SSB intake, respectively. A 20% reduction in SSB consumption with 39% caloric compensation is projected to result in 26,200 (95% UI 21,200–30,600) to 53,800 (95% UI 43,900–62,700) fewer cases of diabetes, 4,800 (95% UI 4,200–5,300) to 10,000 (95% UI 8,800–11,200) fewer myocardial infarctions, and 5,200 (95% UI 4,300–6,200) to 11,000 (95% UI 9,100–13,100) fewer deaths. The largest reductions in diabetes and cardiovascular events were observed in the youngest age group modeled (35–44 years) for both men and women; additionally, more events could be avoided in men compared to women in all age groups. The main limitations of our study are the limited availability of SSB consumption data in Argentina and the fact that we were only able to model the possible benefits of the interventions for the population older than 34 years.
Conclusions
Our study finds that, even under conservative assumptions, a relatively small reduction in SSB consumption could lead to a substantial decrease in diabetes incidence, cardiovascular events, and mortality in Argentina.
Klíčová slova:
Age groups – Argentina – Beverages – Cardiovascular diseases – diabetes mellitus – Health care policy – Myocardial infarction – Obesity
Zdroje
1. World Health Organization. Reducing consumption of sugar-sweetened beverages to reduce the risk of unhealthy weight gain in adults 2018 [cited 2020 June 30]. http://www.who.int/elena/titles/ssbs_adult_weight/en/.
2. Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121(11):1356–64. Epub 2010/03/24. doi: 10.1161/CIRCULATIONAHA.109.876185 20308626
3. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA. 2004;292(8):927–34. Epub 2004/08/26. doi: 10.1001/jama.292.8.927 15328324
4. Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch Intern Med. 2008;168(14):1487–92. Epub 2008/07/30. doi: 10.1001/archinte.168.14.1487 18663160
5. Basu S, Yoffe P, Hills N, Lustig RH. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLoS One. 2013;8(2):e57873. Epub 2013/03/06. doi: 10.1371/journal.pone.0057873 23460912
6. Babey SH, Jones M, Yu H, Goldstein H. Bubbling over: soda consumption and its link to obesity in California. Policy Brief UCLA Cent Health Policy Res. 2009;(Pb2009-5):1–8. Epub 2009/09/23. 19768858
7. Woodward-Lopez G, Kao J, Ritchie L. To what extent have sweetened beverages contributed to the obesity epidemic? Public Health Nutr. 2011;14(3):499–509. Epub 2010/09/24. doi: 10.1017/S1368980010002375 20860886
8. Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC. Habitual caffeine intake and the risk of hypertension in women. JAMA. 2005;294(18):2330–5. Epub 2005/11/10. doi: 10.1001/jama.294.18.2330 16278361
9. Pan American Health Organization. Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications. Washington DC: World Health Organization, 2015.
10. Euromonitor International. Soft Drinks in Argentina. Euromonitor, 2016.
11. Ablin A. Bebidas sin alcohol. De todo, menos quietud: Ministerio de Agricultura, Ganaderia y Pesca, [cited 2020 June 30]. http://www.alimentosargentinos.gob.ar/HomeAlimentos/Publicaciones/revistas/nota.php?id=221.
12. Ministerio de Salud de la Nación, Instituto Nacional de Estadísticas y Censos. Tercera Encuesta Nacional de Factores de Riesgo para Enfermedades no Transmisibles 2013. 2015 [cited cited 2020 June 30]. http://www.msal.gob.ar/images/stories/bes/graficos/0000000544cnt-3ra-encuesta-nacional-factores-riesgo_2013_informe-completo.pdf.
13. Brancati FL, Wang NY, Mead LA, Liang KY, Klag MJ. Body weight patterns from 20 to 49 years of age and subsequent risk for diabetes mellitus: the Johns Hopkins Precursors Study. Arch Intern Med. 1999;159(9):957–63. Epub 1999/05/18. doi: 10.1001/archinte.159.9.957 10326937
14. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6. Epub 1995/04/01. doi: 10.7326/0003-4819-122-7-199504010-00001 7872581.
15. Rexrode KM, Hennekens CH, Willett WC, Colditz GA, Stampfer MJ, Rich-Edwards JW, et al. A prospective study of body mass index, weight change, and risk of stroke in women. JAMA. 1997;277(19):1539–45. Epub 1997/05/21. doi: 10.1001/jama.1997.03540430051032 9153368.
16. Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE, et al. Weight, weight change, and coronary heart disease in women. Risk within the 'normal' weight range. JAMA. 1995;273(6):461–5. Epub 1995/02/08. doi: 10.1001/jama.1995.03520300035033 7654270.
17. Fiscal policies for diet and prevention of noncommunicable diseases: technical meeting report, 5–6 May 2015, Geneva, Switzerland. World Health Organization, 2016 978 92 4 151124 7.
18. Colchero MA, Guerrero-Lopez CM, Molina M, Rivera JA. Beverages Sales in Mexico before and after Implementation of a Sugar Sweetened Beverage Tax. PLoS One. 2016;11(9):e0163463. Epub 2016/09/27. doi: 10.1371/journal.pone.0163463 27668875 Research Center.
19. Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L. Adolescent overweight and future adult coronary heart disease. N Engl J Med. 2007;357(23):2371–9. Epub 2007/12/07. doi: 10.1056/NEJMsa073166 18057339
20. Weinstein MC, Coxson PG, Williams LW, Pass TM, Stason WB, Goldman L. Forecasting coronary heart disease incidence, mortality, and cost: the Coronary Heart Disease Policy Model. Am J Public Health. 1987;77(11):1417–26. Epub 1987/11/01. doi: 10.2105/ajph.77.11.1417 3661794.
21. Moran A, Degennaro V, Ferrante D, Coxson PG, Palmas W, Mejia R, et al. Coronary heart disease and stroke attributable to major risk factors is similar in Argentina and the United States: the Coronary Heart Disease Policy Model. Int J Cardiol. 2011;150(3):332–7. Epub 2011/05/10. doi: 10.1016/j.ijcard.2011.04.013 21550675
22. Instituto Nacional de Estadística y Censos. Censo nacional de población, hogares y viviendas 2010: censo del Bicentenario: resultados definitivos. Serie B N° 2. Tomo 1 Ciudad de Buenos Aires2012 [cited 2020 June 30]. https://www.indec.gob.ar/ftp/cuadros/poblacion/censo2010_tomo1.pdf.
23. Instituto Nacional de Estadística y Censos. Censo nacional de población, hogares y viviendas 2010: censo del Bicentenario: resultados definitivos. Serie B N° 2. Tomo 2 Ciudad de Buenos Aires2012 [cited 2020 June 30]. https://www.indec.gob.ar/ftp/cuadros/poblacion/censo2010_tomo2.pdf.
24. Michele Gragnolati, Rafael Rofman, Ignacio Apella, Troiano S. Los años no vienen solos. Oportunidades y desafíos económicos de la transición demográfica en Argentina: World Bank; 2014.
25. Rubinstein AL, Irazola VE, Poggio R, Bazzano L, Calandrelli M, Lanas Zanetti FT, et al. Detection and follow-up of cardiovascular disease and risk factors in the Southern Cone of Latin America: the CESCAS I study. BMJ open. 2011;1(1):e000126. Epub 2011/10/25. doi: 10.1136/bmjopen-2011-000126 22021769
26. Bahit MC, Coppola ML, Riccio PM, Cipriano LE, Roth GA, Lopes RD, et al. First-Ever Stroke and Transient Ischemic Attack Incidence and 30-Day Case-Fatality Rates in a Population-Based Study in Argentina. Stroke. 2016;47(6):1640–2. Epub 2016/05/25. doi: 10.1161/STROKEAHA.116.013637 27217510
27. Salgado MV, Coxson P, Konfino J, Penko J, Irazola VE, Gutierrez L, et al. Update of the cardiovascular disease policy model to predict cardiovascular events in Argentina. Medicina (B Aires). 2019;79(6):438–44. Epub 2019/12/13. 31829945.
28. Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America's Table Study. Am J Epidemiol. 2001;154(12):1089–99. Epub 2001/12/18. doi: 10.1093/aje/154.12.1089 11744511
29. Elorriaga N, Irazola VE, Defago MD, Britz M, Martinez-Oakley SP, Witriw AM, et al. Validation of a self-administered FFQ in adults in Argentina, Chile and Uruguay. Public Health Nutr. 2015;18(1):59–67. Epub 2014/01/31. doi: 10.1017/S1368980013003431 24476763.
30. Ministerio de Salud. Encuesta Nacional de Salud y Nutricion 2005. Documento de Resultados 2007 [cited 2020 June 30]. http://www.msal.gob.ar/images/stories/bes/graficos/0000000257cnt-a08-ennys-documento-de-resultados-2007.pdf.
31. Chen L, Caballero B, Mitchell DC, Loria C, Lin PH, Champagne CM, et al. Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults. Circulation. 2010;121(22):2398–406. Epub 2010/05/26. doi: 10.1161/CIRCULATIONAHA.109.911164 20497980
32. Imamura F, O'Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576. Epub 2015/07/23. doi: 10.1136/bmj.h3576 26199070
33. Wilsgaard T, Schirmer H, Arnesen E. Impact of body weight on blood pressure with a focus on sex differences: the Tromso Study, 1986–1995. Arch Intern Med. 2000;160(18):2847–53. Epub 2000/10/12. doi: 10.1001/archinte.160.18.2847 11025795
34. Biologic Specimen and Data Repository Information Coordinating Center, National Heart Lung and Blood Institute. Framingham Heart Study-Cohort (FHS-Cohort). 2015 [cited 2020 June 30]. https://biolincc.nhlbi.nih.gov/studies/framcohort/?q=framingham.
35. Biologic Specimen and Data Repository Information Coordinating Center, National Heart Lung and Blood Institute. Framingham Heart Study-Offspring (FHS-OS) 2009 [cited 2020 June 30]. https://biolincc.nhlbi.nih.gov/studies/framoffspring/?q=framingham.
36. Dawber TR. The Framingham Study: The Epidemiology of Atherosclerotic Disease. Cambridge, MA: Harvard University Press; 1980.
37. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP. The Framingham Offspring Study. Design and preliminary data. Prev Med. 1975;4(4):518–25. Epub 1975/12/01. doi: 10.1016/0091-7435(75)90037-7 1208363
38. Biggs ML, Mukamal KJ, Luchsinger JA, Ix JH, Carnethon MR, Newman AB, et al. Association between adiposity in midlife and older age and risk of diabetes in older adults. JAMA. 2010;303(24):2504–12. Epub 2010/06/24. doi: 10.1001/jama.2010.843 20571017
39. Wishnofsky M. Caloric equivalents of gained or lost weight. Am J Clin Nutr. 1958;6(5):542–6. Epub 1958/09/01. doi: 10.1093/ajcn/6.5.542 13594881
40. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378(9793):826–37. Epub 2011/08/30. doi: 10.1016/S0140-6736(11)60812-X 21872751
41. Stookey JD, Constant F, Gardner CD, Popkin BM. Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity (Silver Spring). 2007;15(12):3013–22. Epub 2008/01/17. doi: 10.1038/oby.2007.359 18198310
42. Mekonnen TA, Odden MC, Coxson PG, Guzman D, Lightwood J, Wang YC, et al. Health benefits of reducing sugar-sweetened beverage intake in high risk populations of California: results from the cardiovascular disease (CVD) policy model. PLoS One. 2013;8(12):e81723. Epub 2013/12/19. doi: 10.1371/journal.pone.0081723 24349119
43. Sanchez-Romero LM, Penko J, Coxson PG, Fernandez A, Mason A, Moran AE, et al. Projected Impact of Mexico's Sugar-Sweetened Beverage Tax Policy on Diabetes and Cardiovascular Disease: A Modeling Study. PLoS Med. 2016;13(11):e1002158. doi: 10.1371/journal.pmed.1002158 27802278.
44. Fernández A, Mejía RM. B.A.S.T.A. Bebidas Azucaradas, Salud y Tarifas en Argentina. Enfoque Multidisciplinario. Ciudad de Buenos Aires, Argentina: CEDES, 2018.
45. World Bank. Argentina: Population, total 2017 [cited 2020 June 30]. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=AR.
46. World Bank. Mexico: Population, total 2017 [cited 2020 June 30]. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=MX.
47. Konfino J, Ferrante D, Mejia R, Coxson P, Moran A, Goldman L, et al. Impact on cardiovascular disease events of the implementation of Argentina's national tobacco control law. Tob Control. 2014;23(2):e6. Epub 2013/09/17. doi: 10.1136/tobaccocontrol-2012-050599 23092886.
48. Konfino J, Mekonnen TA, Coxson PG, Ferrante D, Bibbins-Domingo K. Projected impact of a sodium consumption reduction initiative in Argentina: an analysis from the CVD policy model—Argentina. PLoS One. 2013;8(9):e73824. Epub 2013/09/17. doi: 10.1371/journal.pone.0073824 24040085.
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 7
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Berberin: přírodní hypolipidemikum se slibnými výsledky
- „Pekelný kamínek“ s léčivými účinky: Jak se dusičnan stříbrný používá dnes?
Nejčtenější v tomto čísle
- Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: A systematic review and meta-analysis
- Can self-imposed prevention measures mitigate the COVID-19 epidemic?
- Obesity, clinical, and genetic predictors for glycemic progression in Chinese patients with type 2 diabetes: A cohort study using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank
- Changes in the amount of nutrient of packaged foods and beverages after the initial implementation of the Chilean Law of Food Labelling and Advertising: A nonexperimental prospective study